Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T00:36:08.041Z Has data issue: false hasContentIssue false

Influence of He implantation conditions on strain relaxation and threading dislocation density in Si0.8Ge0.2 virtual substrates

Published online by Cambridge University Press:  17 March 2011

J. Cai
Affiliation:
T. J. Watson Research Center, Yorktown Heights, NY, USA
P. M. Mooney
Affiliation:
T. J. Watson Research Center, Yorktown Heights, NY, USA
S. H. Christiansen
Affiliation:
T. J. Watson Research Center, Yorktown Heights, NY, USA
H. Chen
Affiliation:
Microelectronics Division, Hopewell Junction, NY, USA
J. O. Chu
Affiliation:
T. J. Watson Research Center, Yorktown Heights, NY, USA
J. A. Ott
Affiliation:
T. J. Watson Research Center, Yorktown Heights, NY, USA
Get access

Abstract

The strain relaxation and threading dislocation density of He-implanted and annealed SiGe/Si heterostructures have been studied. For He doses above a threshold of 8×1015 cm−2, the degree of strain relaxation depends primarily on the SiGe layer thickness; a similar degree of strain relaxation is obtained when the He dose and energy are varied over a relatively wide range. In contrast, the threading dislocation density is strongly influenced by the implantation depth. There is a strong correlation between the parameter He(SiGe), the He dose in the SiGe layer calculated from He profiles simulated using the program Stopping and Range of Ions in Matter (SRIM), and the threading dislocation density. We find that to achieve a low threading dislocation density, <5×107 cm−2, He(SiGe) must be less than 1015 cm−2. The strain relaxation mechanism is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rim, K., Chu, J., Chen, H., Jenkins, K.A., Kanarsky, T., Lee, K., Mocuta, A., Zhu, H., Roy, R., Newbury, J., Ott, J., Petrarca, K., Mooney, P., Lacey, D., Koester, S., Chan, K., Boyd, D., Ieong, M. and Wong, H.-S., Symp. on VLSI Tech., 98 (2002).Google Scholar
2. Koester, S. J., Saenger, K. L., Chu, J. O., Ouyang, Q. C., Ott, J. A., Rooks, M. J., Canaperi, D. F., Tornello, J. A., Jahnes, C. V., and Steen, S. E., Electron. Lett. 39, 1684 (2003).Google Scholar
3. Mantl, S., Holländer, B., Liedtke, R., Mesters, St., Herzog, H. -J., Kibbel, H., and Hackbarth, T., Nucl. Instrum. Methods Phys. Res. B147, 29 (1999).Google Scholar
4. Luysberg, M., Kirch, D., Trinkaus, H., Holländer, B., Lenk, St., Mantl, S., Herzog, H.-J., Hackbarth, T., Fichtner, P. F. P., J. Appl. Phys. 92, 4290 (2002).Google Scholar
5. Christiansen, S. H., Mooney, P. M., Chu, J. O. and Grill, A., Mat. Res. Soc. Symp. Proc. 686, 27 (2002).Google Scholar
6. Cai, J., Mooney, P. M., Christiansen, S. H., Chen, H., Chu, J. O., and Ott, J. A., accepted for publication in J. Appl. Phys. 95, 5347 (2004).Google Scholar
7. Raineri, V., Fallica, P. G., Percolla, G., Battaglia, A., Barbagallo, M., and Campisano, S. U., J. Appl. Phys. 78, 3727 (1995).Google Scholar
8. Meyers, S. M. and Follstaedt, D. M., J. Appl. Phys. 79, 1337 (1996).Google Scholar
9. Fichtner, P. F. P., Kaschney, J. R., Yankov, R. A., Mücklich, A., Kreiβig, U., and Skorupa, W., Appl. Phys. Lett. 70, 732 (1997).Google Scholar
10. Fichtner, P. F. P., Kaschney, J. R. et al. , Nuclear Instruments and Methods in Physics Research B 136–138, 460 (1998).Google Scholar