Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-23T10:53:18.410Z Has data issue: false hasContentIssue false

Influence of Growth Parameters on the Properties of InxGa1-xAs Grown on GaAs by OMVPE

Published online by Cambridge University Press:  22 February 2011

E. Ernest Van Dyk
Affiliation:
Physics Department, University of Port Elizabeth, P O Box 1600, Port Elizabeth, 6000, SOUTH AFRICA
Andrew W. R. Leitch
Affiliation:
Physics Department, University of Port Elizabeth, P O Box 1600, Port Elizabeth, 6000, SOUTH AFRICA
Hendrik L. Ehlers
Affiliation:
Physics Department, University of Port Elizabeth, P O Box 1600, Port Elizabeth, 6000, SOUTH AFRICA
Get access

Abstract

InxGa1-xAs epilayers (x < 0.2) have been grown on GaAs substrates by atmospheric pressure OMVPE. The effects of varying the substrate temperature and the gas composition on the properties of the epilayers were investigated. The investigations have shown that higher mobilities were obtained at low growth temperatures (610°C), while optimum optical properties were obtained at higher growth temperatures (690°C). Variation of the AsH3 overpressure yielded optimum electrical and optical properties at a V/III ratio of 50. 77 K mobilities higher than 42 000 cm2/V.s and photoluminescence linewidths as low as 4.4 meV were obtained for x = 0.087 and x = 0.137 epilayers, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yoon, K.S., Stringfellow, G.B. and Huber, R.B., J. Appl. Phys. 62, 1931 (1987).Google Scholar
2. Ramberg, L.P., Enquist, P.M., Chen, Y.-K., Najjar, F.E, Eastman, L.F., Fitzgerald, E.A. and Kavanagh, K.L., J. Appl. Phys. 61, 1234 (1987).Google Scholar
3. Ballingall, J.M., Ho, Pin, Martin, P.A., Tessmer, G.J., Yu, T.H., Lewis, N. and Hall, E.L., J. Electron. Mater. 19, 509 (1990).Google Scholar
4. Dunstan, D.J., Young, S. and Dixon, R.H., Appl. Phys. Lett. 70, 3038 (1991).Google Scholar
5. Dunstan, D.J., Dixon, R.H., Kid, P., Howard, L.R, Wilkinson, V.A., Lambkin, J.D., Jeynes, C., Halsall, M.P., Lancefield, D., Emeny, M.T., Goodhew, P.J., Homewood, K.P., Sealy, B.J. and Adams, A.R., J. Crystal Growth 126, 589 (1993).Google Scholar
6. Andersson, T.G., Chen, Z.G., Kulakovskii, V.D., Uddin, A. and Vallin, J.T., Phys. Rev. B. 37, 4032 (1988).Google Scholar
7. Ehlers, H.L., Leitch, A.W.R. and Vermaak, J.S., J. Crystal Growth 96, 101 (1989).Google Scholar
8. Roth, A.P., Sacilotti, M.A., Masut, R.A., Machado, A. and D'Arcy, P.J., J. Appl. Phys. 60, 2003 (1986).Google Scholar
9. Stillman, G.E. and Wolfe, C.M., Thin Solid Films 31, 69 (1976).Google Scholar
10. Dapkus, P.D., Manasevit, H.M., Hess, K.L., Low, T.S. and Stillman, G.E., J. Crystal Growth 55 10 (1981).Google Scholar
11. Kuo, C.P., Cohen, R.M., Fry, K.L. and Stringfellow, G.B., J. Electron. Mater. 14, 231 (1985).Google Scholar
12. Fry, K.L., Kuo, C.P., Larsen, C.A., Cohen, R.M., Stringfellow, G.B. and Melas, A., J. Electron. Mater. 15, 91 (1986).Google Scholar
13. Carey, K.W., Appl. Phys. Lett. 46, 89 (1989).Google Scholar
14. Kamada, M. and Ishikawa, H., J. Crystal Growth 94, 849 (1986).Google Scholar
15. Bourgoin, J.C., Bardeleben, H.J. von and Stiévenard, D., J. Appl. Phys. 64, R65 (1988).Google Scholar
16. Morris, D., Roth, A.P., Masut, R.A., Lacelle, C. and Brebner, J.L., J. Appl. Phys. 64, 4135 (1988).Google Scholar
17. Ven, J. van de, Weyher, J.L., Ikink, H. and Giling, L.J., J. Electrochem. Soc. 34, 989 (1987).Google Scholar