Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-25T04:43:02.788Z Has data issue: false hasContentIssue false

Influence of Doping on the Structural Properties of Micro-Crystalline Silicon Prepared with the VHF-GD Technique at Low Deposition Temperatures.

Published online by Cambridge University Press:  21 February 2011

F. Fingera
Affiliation:
Institut de Microtechnique, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
K. Prasad
Affiliation:
Institut de Microtechnique, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
S. Dubail
Affiliation:
Institut de Microtechnique, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
A. Shah
Affiliation:
Institut de Microtechnique, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
X.-M. Tang
Affiliation:
Institut de Physique, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
J. Weber
Affiliation:
Institut de Physique, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
W. Beyer
Affiliation:
Institut für Schicht- und Ionentechnik, Forschungszentrum Jiilich, D-5170 Jülich, Germany.
Get access

Abstract

In doped and undoped microcrystalline silicon prepared with Very High Frequency Glow Discharge, hydrogen is found to be mainly located at the grain boundaries from where it desorbs easily at low annealing temperatures. In undoped material hydrogen evolution peaks are between 400°C and 500°C. Upon doping, a new major peak appears at 300°C and a strong reduction of the typical Si-H infrared absorption bands are found for doped samples when annealed up to 300°C. This is accompanied by an increase of the conductivity due to either de-passivation of dopants in the crystallites or a favourable reconstruction at the grain boundaries. Hydrogen profiles show a hydrogen depletion at the film/air interface that is more profound in doped material, thus correlating with the appearance of the low temperature evolution peak. The high free carrier density in the crystallites of the doped material gives rise to strong optical absorption. Although correlating nicely with conductivity, the free carrier absorption cannot be evaluated simply in terms of die Drude theory. In view of the high conductivities and the dominance of Si-H surface bonds we argue that our material does not contain a large amount of amorphous tissue.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Prasad, K., Finger, F., Curtins, H., Shah, A. and Baumann, J., Mat. Res. Soc. Symp. Proc. 164, 27 (1989)CrossRefGoogle Scholar
[2] Finger, F., Kroll, U., Viret, V., Shah, A., Beyer, W., Tang, X.-M. Weber, J., Howling, A. and Hollenstein, Ch., submitted to J. Appl. Phys. (1991).Google Scholar
[3] Prasad, K., Kroll, U., Finger, F., Shah, A., Dorier, J.-L., Howling, A., Baumann, J. and Schubert, M., this volumeGoogle Scholar
[4] Beyer, W. in Tetrahedrally-Bonded Amorphous Semiconductors, ed. Adler, D. and Fritzsche, H. (Plenum Press, New York, 1985) p. 128 Google Scholar
[5] Tang, X.-M., Weber, J., Baer, Y. and Finger, F., Sol. State Comm. 74, 171 (1990)Google Scholar
[6] Prasad, K., Finger, F., Shah, A. and Schubert, M., submitted to 14th. Int. Conf. Amorphous Semiconductors, Garmisch-Partenkirchen (1991)Google Scholar
[7] Prasad, K. and Müller, E., unpublishedGoogle Scholar
[8] Stutzmann, M., Herrero, C.P., Ingels, M. and Breitschwerdt, A., Mat. Res. Soc. Symp. Proc. 164, 189 (1989)Google Scholar
[9] Beyer, W., to be published in Physica B 170 (1991)Google Scholar
[10] Beyer, W., Herion, J. and Wagner, H., J. Non-Cryst. Sol. 114, 217 (1989)CrossRefGoogle Scholar
[11] Hamasaki, T., Kurata, H., Hirose, M. and Osaka, Y., Jap. J. Appl. Phys, 20, 84 (1981)Google Scholar
[12] Spitzer, W. G. and Fan, H. Y., Phys. Rev. B 106, 882 (1957); 108, 268 (1957)Google Scholar
[13] Topics in Applied Physics Vol. 31. ed. Seraphin, B.O. (Springer-Verlag, Berlin 1979)Google Scholar
[14] Solar Material Science, ed. Murr, L.E., Academic Press, New York (1980)Google Scholar
[15] Mishima, Y., Hirose, M. and Osaka, Y., J. Appl. Phys. 51, 1157 (1980)Google Scholar