Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-17T05:44:05.206Z Has data issue: false hasContentIssue false

Influence of doping on the electrochemical properties of anatase

Published online by Cambridge University Press:  11 February 2011

Marina V. Koudriachova
Affiliation:
Computational Physics, Dept. of Multiscale Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, the Netherlands
Simon W. de Leeuw
Affiliation:
Computational Physics, Dept. of Multiscale Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, the Netherlands
Get access

Extract

The effect of substitution on the intercalation properties of anatase-structured titania has been investigated in first principles calculations. Ti4+-ions were substituted by Zr4+, Al3+ and Sc3+ respectively and O2- -ions by N3-. For each compound the open circuit voltage profile (OCV) was calculated and compared to anatase. Lithium intercalation proceeds as in pure anatase through a phase separation into a Li-rich and a Li-poor phase in all cases examined here. The Li-content of the phases depends on the nature of the dopant and its concentration. Substitution by N3--ions does not lead to lower potentials, whereas doping with trivalent Sc3+- and Al3+- ions decreases the intercalation voltage. Substitution by tetravalent Zr4+-ions within the range of solubility does not significantly affect the OCV of anatase. A correlation is observed between the predicted equilibrium voltage and the participation of the Ti4+-ions in accommodating the donated electron density upon lithiation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Finklea, H.O., in Semiconductor Electrodes, Studies in Physical and Theoretical Chemistry, Elsevier, Amsterdam, Vol. 55, 43, 1988.Google Scholar
2. O'Hare, D., Inorganic Intercalation Compounds, in Inorganic Materials, Bruce, D.W. and O'Hare, D. (Eds), p171, John Wiley & Sons Ltd, UK, 1996.Google Scholar
3. Huang, S., Kavan, L., Kay, A. and Grätzel, M., J. Electrochem. Soc. 141, 142 (1995).Google Scholar
4. Kavan, L., Grätzel, M., Gilbert, S.E., Klemenz, C. and Scheel, H.J., J. Am. Chem. Soc. 118, 6716 (1996).Google Scholar
5. Ohzuku, T., Takehara, Z. and Yoshizawa, S., Electrochim. Acta 27, 1263 (1982).Google Scholar
6. Yu, Y.P., Rham, E. and Holze, R., Electrochim. Acta 47, 4391 (2002).Google Scholar
7. Delmas, C., Menetrier, M., Croguennec, L., Saadounne, I., Rougier, A., Pouillerie, C., Prado, G, Grüne, M. and Fournes, L., Electrochim. Acta 45, 243 (1999).Google Scholar
8. Ohzuku, T., Nakura, K. and Aioli, T., Electrochim. Acta 45, 151 (1999).Google Scholar
9. Julien, C., Nazri, G.A. and Rougier, A., Solid State Ionics 135, 121 (2000).Google Scholar
10. Julien, C., Camacho-Lopez, M.A., Lemal, M. and Ziolkiewicz, S., Mat. Sci. Eng. B95, 6 (2002).Google Scholar
11. Kim, J. and Amine, K., Electrochem. Comm. 3, 52 (2001).Google Scholar
12. Ceder, G., Aydinol, M.K. and Kohan, A.F., Comp. Mater. Sci. 8, 161 (1997).Google Scholar
13. Ceder, G., Chang, Y.-M., Sadoway, D.R., Aydinol, M.K., Jang, Y.I. and Huang, B., Nature 392, 694 (1998).Google Scholar
14. Blaauw, C., Naguib, H.M., Ahmed, A., Ahmed, S.W., Whitton, J.L. and Leslie, J.R., Mater. Res. Bull. 18, 87 (1983).Google Scholar
15. Fukushima, K. and Yamada, I., Jap. J. Appl. Phys. 35, 5790 (1996).Google Scholar
16. Yang, J. and Ferreira, J.M.F., Mater. Res. Bull. 33, 389 (1998).Google Scholar
17. Yamaguchi, O. and Mukaida, Y., J. Amer. Ceram. Soc. 72, 330 (1989).Google Scholar
18. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A. and Joannapoulos, J.D., Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
19. CASTEP 3.9 Academic version, licensed under the UKCP-MSI agreement, 1999.Google Scholar
20. Perdew, J.P., Phys. Rev. B 34, 7406 (1986).Google Scholar
21. Vanderbilt, D., Phys. Rev. B 41, 7892 (1990).Google Scholar
22. Burdet, J.K., Hughbanks, T., Miller, G.J., Richardson, J.W. and Smith, J.V., J. Am. Chem. Soc 109, 3639 (1987).Google Scholar
23. Cava, R.J., Santoro, A., Murphy, D.W., Zahurak, S.M. and Roth, R.S., J. Solid State Chem. 83, 64 (1984).Google Scholar
24. van de Krol, R., Goossens, A. and Meulenkamp, E.A., J. Electrochem. Soc. 146, 3150 (1999).Google Scholar
25. Koudriachova, M.V., Harrison, N.M. and de Leeuw, S.W., Phys. Rev. Lett. 86, 1275 (2001).Google Scholar