Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-23T16:52:50.022Z Has data issue: false hasContentIssue false

Influence of atomic hydrogen on intrinsic defects in CuInSe2

Published online by Cambridge University Press:  21 March 2011

Karsten Otte
Affiliation:
Institute for Surface Modification, Permoserstr. 15, 04318 Leipzig, Germany, kotte@rz.uni-leipzig.de
Gerd Lippold
Affiliation:
Institute for Surface Modification, Permoserstr. 15, 04318 Leipzig, Germany
Wilfried Frank
Affiliation:
Institute for Surface Modification, Permoserstr. 15, 04318 Leipzig, Germany
Axel Wenzel
Affiliation:
Universität Augsburg, 86135 Augsburg, Germany
Johann Krauser
Affiliation:
Hahn-Meitner-Institut, Glienicker Str. 100, 14109 Berlin, Germany
Alois Weidinger
Affiliation:
Hahn-Meitner-Institut, Glienicker Str. 100, 14109 Berlin, Germany
Axel Schindler
Affiliation:
Institute for Surface Modification, Permoserstr. 15, 04318 Leipzig, Germany
Get access

Abstract

Hydrogen with an energy of 300 eV was implanted into single crystalline CuInSe2 samples at temperatures of 200 °C and 300 °C during implantation. We found that the hydrogen is not limited to the expected implantation depth but diffuses into the bulk of the sample. The hydrogen concentration ranges from 1019 H/cm3 in a depth of about 300 nm up to some 1021 H/cm3 next to the surface and resembles a diffusion profile. The hydrogen induced change of composition was not only at the surface, but also up to a depth of about 200 nm similar to that of the hydrogen profile. Mainly a Cu deficiency after hydrogen implantation could be observed and is explained as the passivation of VCu by hydrogen and the additional production of VCu by the induced band-bending.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ballutaud, D., Debiemme-Chouvy, C., Etcheberry, A., Mierry, P. de and Svob, L., Appl. Surf. Sc. 84, 187 (1995).Google Scholar
2. Bocchi, C., Franzosi, P., Lazzarini, L., Salviati, G., Gastaldi, L. and Palumbo, R., J. Electrochem. Soc. 140, 2034 (1993).Google Scholar
3. Yakushev, M. V., Neumann, H., Tomlinson, R.D., Rimmer, P. and Lippold, G., Cryst. Res. Technol. 29, 417 (1994).Google Scholar
4. Lippold, G., Otte, K., Schlemm, H. and Grill, W., Mat. Res. Soc. Symp. Proc. Vol. 513, 269 (1998).Google Scholar
5. Lippold, G., Otte, K., Schindler, A., Klenk, R., Krauser, J. and Schlemm, H., IOP Conf. Ser. No 152 (B), 381 (1998).Google Scholar
6. , Krauser, Weidinger, A., Lippold, G., Otte, K., Bruns, J., Töpper, K., Scheer, R., Klenk, R., Weber, M. and Lux-Steiner, M. Ch., Proc. 14th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 2072 (1997).Google Scholar
7. Weidinger, A., Krauser, J., Riedle, Th., Klenk, R., Lux-Steiner, M. Ch. and Yakushev, M. V., Mat. Res. Soc. Symp. Proc. Vol. 513, 177 (1998).Google Scholar
8. Otte, K., Lippold, G., Hirsch, D., Schindler, A., Yakushev, M. V., Martin, R. W. and Bigl, F., Proc. of 16th European Photovoltaic Solar Energy Conference, 1-5 May 2000, Glasgow, UK, 915 (2000).Google Scholar
9. Otte, K., Lippold, G., Hirsch, D., Gebhardt, R. K. and Chassé, T., Appl. Surf. Sci. (2001) (in press).Google Scholar
10. Schlemm, H., J. Vac. Sci. Technol. A 14, 223 (1996).Google Scholar
11. Otte, K., Schindler, A., Bigl, F. and Schlemm, H., Rev. Sci. Instrum. 69, 1499 (1998).Google Scholar
12. Krauser, J., Wulf, F. and Bräunig, D., J. Non-Cryst. Solids 187, 264 (1995).Google Scholar
13. Otte, K., Lippold, G., Frost, F., Schindler, A., Bigl, F., Yakushev, M. V. and Tomlinson, R. D., J. Vac. Sci. Technol. A 17 (1), 19 (1999).Google Scholar
14. Bigl, F., Schindler, A., Flachowsky, J., Freyer, K. and Treutler, H.-C., Proc. Int. Conf. Ion Beam Modific. Mat., Budapest 1978, ed. Gyulai, J., Lohner, T., Pásztor, E. 1743.Google Scholar
15. Frank, W., Thomas, H.-J. and Schindler, A., Spectrochim. Acta 50B, 265 (1995).Google Scholar
16. Krauser, J., Riedle, T., Klenk, R., Klaer, J., Lux-Steiner, M. C. and Weidinger, A., Appl. Phys. A 70, 617 (2000).Google Scholar
17. Zang, S. B., Wei, S.-H., Zunger, A., Katayama-Yoshida, H., Phys. Rev. B 57, 9642 (1998).Google Scholar