Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T19:25:23.679Z Has data issue: false hasContentIssue false

Influence of a silicon cap on SiGe passivation by anodic oxidation

Published online by Cambridge University Press:  10 February 2011

J. Rappich
Affiliation:
Hahn-Meitner Institut, Abteilung Photovoltaik, Rudower Chaussee 5, D-12489 Berlin, Germany
I. Sieber
Affiliation:
Hahn-Meitner Institut, Abteilung Photovoltaik, Rudower Chaussee 5, D-12489 Berlin, Germany
A. Schöpke
Affiliation:
Hahn-Meitner Institut, Abteilung Photovoltaik, Rudower Chaussee 5, D-12489 Berlin, Germany
W. Füssel
Affiliation:
Hahn-Meitner Institut, Abteilung Photovoltaik, Rudower Chaussee 5, D-12489 Berlin, Germany
M. Glück
Affiliation:
Daimler-Benz Forschungszentrum Ulm, Wilhelm-Runge-Str. 11, D-89081 Ulm, Germany
J. Hersener
Affiliation:
Daimler-Benz Forschungszentrum Ulm, Wilhelm-Runge-Str. 11, D-89081 Ulm, Germany
Get access

Abstract

We applied electrochemical oxidation as a low thermal budget process for the passivation of thin SiGe epilayers on Si substrate and compared the results with those obtained on thermally oxidized layers. The use of a thin silicon cap on the SiGe layer reduces the electrochemical corrosion with dissolution of Ge during oxidation and leads to a higher amount of GeO2 in the oxidized SiGe layer than anodic oxidation without a Si cap. The protected SiGe layer shows a slight Ge enrichment at the interface which is different from the behavior of the non-protected SiGe layer. The highest Ge pile-up is achieved by the thermally oxidized samples where the oxide layer is formed by nearly pure SiO2. Using photoluminescence spectroscopy we showed that the passivation and quality of the interface is best if no Ge enrichment occurs. The results suggest that electrochemical oxidation of SiGe layers is preferable to high temperature processing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. LeGoues, F.K., Rosenberg, R., Nguyen, T., Himpsel, F. and Meyerson, B.S.; J. Appl. Phys. 65(4), 1724 (1989)Google Scholar
2. Nayak, D.K., Kamjoo, K., Park, J.S., Woo, J.C.S. and Wang, K. L.; Appl. Phys. Lett. 57, 369 (1990)Google Scholar
3. K Liou, H., Mei, P., Gennser, U. and Yang, E.S.; Appl. Phys. Lett. 59, 1200 (1991)Google Scholar
4. König, U. and Hersener, J.; Solid State Phenomena 47–48, 1732 (1996)Google Scholar
5. Caragianis, C., Shigesato, Y. and Paine, D.C.; J. Elee. Matehals 23, 883 (1994)Google Scholar
6. Li, P.W., Liou, H.K., Yang, E.S., Iyer, S.S., Smith, T.P. and Lu, Z.; Appl. Phys. Lett. 60, 3265(1992)Google Scholar
7. Goh, I.S., Hall, S., Eccleston, W., Zhang, J.F. and Warner, K.; Electron. Lett. 30, 1988 (1994)Google Scholar
8. Vancuawenberghe, O., Hellman, O.C., Herbot, N. and Tan, W.J.; Appl. Phys. Lett. 59, 2031 (1991)Google Scholar
9. Mende, G., Flietner, H. and Deutscher, M.; J. Electrochem. Soc. 140, 188 (1993)Google Scholar