Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-22T16:39:45.786Z Has data issue: false hasContentIssue false

Index of Refraction Anisotropy in InGaAs/InP Heterostructures Measured by Ellipsometry

Published online by Cambridge University Press:  28 February 2011

Brian R. Bennett
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Jesús A. Del Alamo
Affiliation:
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

We applied ellipsometry to characterize layers of InxGa1-xAs grown by molecular beam epitaxy on (001) InP. Samples with mismatched layers exhibit significant anisotropy in the index of refraction. We explain these observations by the presence of misfit dislocations which form in an asymmetric pattern. This results in asymmetric strain and, via piezo-optical effects, an anisotropy in the optical properties. This effect makes ellipsometry a more sensitive technique than double-crystal x-ray diffraction for detecting misfit dislocations in these heterostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Kuphal, E. and Dinges, H.W., J. Appl. Phys. 50, 4196 (1979).Google Scholar
2Palik, E.D., ed., Handbook of Optical Constants of Solids (Academic, Orlando, FL, 1985).Google Scholar
3Chu, S.N.G., Macrander, A.T., Strege, K.E., and Johnston, W.D., J. Appl. Phys. 57, 249 (1985).Google Scholar
4Azzam, R.M.A. and Bashara, N.M., Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).Google Scholar
5Macrander, A.T. and Strege, K.E., J. Appl. Phys. 59, 442 (1986).Google Scholar
6Macrander, A.T. and Swaminathan, V., J. Electroch. Soc. 134, 1247 (1987).Google Scholar
7Matyi, R.J., Lee, J.W., and Schaake, H.F., J. Electron. Mat. 17, 87 (1988).Google Scholar
8Fitzgerald, E.A., Watson, G.P., Proano, R.E., Ast, D.G., Kirchner, P.D., Pettit, G.D., and Woodall, J.M., J. Appl. Phys. 65, 2220 (1989).Google Scholar
9Kavanagh, K.L., Capano, M.A., Hobbs, L.W., Barbour, J.C., Maree, P.MJ., Schaff, W., Mayer, J.W., Pettit, D., Woodall, J. M., Stroscio, J.A., and Feenstra, R.M., J. Appl. Phys. 64, 4843 (1988).Google Scholar
10Nagai, H., J. Appl. Phys. 43, 4254 (1972).Google Scholar
11Jackson, D.J. and Persechini, D.L., Electron. Lett. 21, 44 (1985).Google Scholar
12Grundmann, M., Lienert, U., Bimberg, D., Fischer-Colbrie, A., and Miller, J.N., Appl. Phys. Lett. 55, 1765 (1989).Google Scholar
13Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 27, 118 (1974).Google Scholar
14People, R. and Bean, J.C., Appl. Phys. Lett. 47, 322 (1985).Google Scholar
15Orders, P.J. and Usher, B.F., Appl. Phys. Lett. 50, 980 (1987).Google Scholar
16Gourley, P.L., Fritz, I.J., and Dawson, L.R., Appl. Phys. Lett. 52, 377 (1988).Google Scholar