Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T11:53:11.507Z Has data issue: false hasContentIssue false

(InAs)1/(GaAs)n Superlattice Quantum Well Lasers

Published online by Cambridge University Press:  25 February 2011

J. Lopata
Affiliation:
AT&T Bell Laboratories Murray Hill, New Jersey 07974
N. K. Dutta
Affiliation:
AT&T Bell Laboratories Murray Hill, New Jersey 07974
Naresh chand
Affiliation:
AT&T Bell Laboratories Murray Hill, New Jersey 07974
Get access

Extract

Strained layer In0.2Ga0.8As/GaAs quantum-well (QW) lasers have been used to pump Erbium Doped Fiber Amplifiers for use in opto-electronic communication systems. These InGaAs/GaAs Q-W lasers grown as graded index separate confinement heterostructures (GRINSCH) emit at 980 nm and have exhibited low threshold current densities, high electrical to optical power conversion efficiencies, low noise, and low temperature sensitivities [1–3]. Recently there has been much attention toward the growth and fabrication of devices containing short period superlattices of (InAs)m/(GaAs)m or (GaAs)m/(AlAs)n compositions [4–9]. Indeed the growth of inverted MODFET structures using a (GaAs)/(AlAs) superlattice barrier in place of an AlGaAs random alloy exhibited an increase in low temperature mobility due to reductions in the number of impurities and interface roughness [7]]. Can the optical properties of strained layer InGaAs/GaAs Q-W lasers also be improved by growing an (InAs)/(GaAs)4 short period superlattice as the active layer in place of the In0.2Ga0.8 As random alloy?

This paper reports the fabrication of ridge waveguide lasers using a 6 period (InAs)1/(GaAs)4 superlattice active region in a GRINSCH laser structure. One period of the superlattice consists of 1 monolayer (ML) of InAs and 4 ML of GaAs. Thus the average In composition in the superlattice is 20%. This superlattice laser is an alternative to the In0.2Ga0.8As/GaAs random alloy quantum-well laser used as a pump source for Erbium Doped Fiber Amplifiers. In a single quantum well In0.2Ga0.8As/GaAs laser the active region is a thin layer (-70Å thick) sandwiched between GaAs barrier layers. The superlattice active laser reported here has 6 periods of (InAs)1/(GaAs)4 as the light emitting region of a total width comparable to a single quantum well of random alloy composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Desurvire, E., IEEE Photon. Technol. Lett. 2, 208 (1990).Google Scholar
2. Chand, N., Becker, E. E., van der Ziel, J. P., Chu, S. N. G. and Dutta, N. K., Appl. Phys. Lett. 58, 1704 (1991).Google Scholar
3. Fu, R. J., Hong, C. S., Chan, E. Y., Booker, D. J. and Figueroa, L., IEEE Photon. Technol. Lett. 3, 308 (1991).Google Scholar
4. Yao, T., Jpn. J. Appl. Phys. 22, L680 (1983).Google Scholar
5. Grunthaner, F. J., Yen, M. Y., Fernandez, R., Lee, T. C., Madhukar, A. and Lewis, B. F., Appl. Phys. Lett 46, 983 (1985).Google Scholar
6. Gerad, J. M., Marzin, J. Y., d'Anterroches, C., Soucail, B. and Voisin, P., Appl. Phys. Lett. 55, 559 (1989).Google Scholar
7. Toyoshima, H., Onda, K., Mizuki, E., Samato, N., Kuzuhara, M., Itoh, T., Okamoto, A., Anan, T. and Ichihashi, T., J. Appl. Phys. 69, 3941 (1991).Google Scholar
8. Sato, M. and Horikoshi, Y., J. Appl. Phys. 69, 7697 (1991).Google Scholar
9. Padjen, R. and Paquet, D., Phys. Rev. B 43, 4915 (1991).Google Scholar
10. Chand, N., Jordan, A. S., Chu, S. N. G. and Geva, M., Appl. Phys. Lett. 59, 3270 (1991).Google Scholar
11. Chand, N., Geva, M., Chu, S. N. G., Swaminathan, V. and Jordan, A. S., J. Vac. Sci. Technol. B 10, 807 (1992).Google Scholar
12. van der Ziel, J. P. and Chand, N., Appl. Phys. Lett. 58, 1437 (1991).Google Scholar
13. Agrawal, G. P. and Dutta, N. K., Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold Company, New York, 1986), p. 128.Google Scholar