Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-08T01:53:13.595Z Has data issue: false hasContentIssue false

In Situ Morphological Study of The Al/SiO2 Reaction Around The eutectic Point

Published online by Cambridge University Press:  15 February 2011

Lévy Allam
Affiliation:
Laboratoire de Physique Electronique, IUT de Chartres, Université d'Orléans, 1 Place Mendès-France, 28000 Chartres, France
Vincent Fleury
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique-CNRS, 91128 Palaiseau, France
Get access

Abstract

In the context of the electronic industry, thin films of aluminum are deposited on silica. However, the Al/SiO2 interface is unstable. A reaction leading to oxidation of Al and reduction of SiO2 occurs. We present an in situ study of this reaction, in thin films, at temperatures above 500°C. This experiment allows to understand the essential steps of the oxidation of Al by SiO2, and it shows that thermal cycles can be used to generate nucleation centers artificially. More generally, the morphological interpretation of out-of-equilibrium growth patterns gives important insight into the coupling between the thermodynamics and morphological aspects of a thin film chemical reaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Standage, A E. and Gani, M. S., Reaction Between Vitreous Silica and Molten Aluminum, J. Am. Ceram. Soc. 50, 101105, (1967).Google Scholar
2. Silverman, R. J., The effect of moisture on the aluminum-silica reaction, Electrochem. Soc. 115, 674676, (1968).Google Scholar
3. Chou, N. J. and Eldridge, J. M., Effects of Material and Processing parameters on the Dielectric Strength of Thermally Grown SiO2 films, J. Electrochem. Soc. 117, 12871293, (1970).Google Scholar
4. Prabriputaloong, K. and Piggott, M. R., Reduction of SiO2 by molten Al, J. Am. Ceram. Soc. 56, 184185, (1973).Google Scholar
5. Stanley, G. and Ostrowsky, N. eds., On Growth and Form NATO ASI Series Vol. 100 (1986), Martinus Nijhoff Publishers Kluwer Academic Publishers Group (Boston).Google Scholar
6. Vicsek, T., Fractal Growth Phenomena World Scientific (Singapore), Second Edition (1992).Google Scholar
7. Meakin, P., in Phase transitions and critical phenomena, vol. 12, Domb, C. and Leibowitz, J. L. eds. Academic Press (1988).Google Scholar
8. Ben-Jacob, E. and Garik, P., The formation of patterns in non-equilibrium growth, Nature 343, 523530, (1990).Google Scholar
9. Witten, T. A. and Sander, L. M., Diffusion limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett. 47, 14001403, (1981).Google Scholar
10. Amar, J. G., Family, F. and Lam, P. M., Dynamic scaling of the island-size distribution and percolation in a model of submonolayer molecular-beam epitaxy, Phys. Rev. B. 50, 87818797, (1994).Google Scholar
11. Jensen, P., Barabasi, A.-L., Larralde, H., Havlin, S. and and Stanley, H. E., Deposition, diffusion and aggregation of atoms on surfaces: a model for nanostructure growth, Phys. Rev. B 50 1531615329, (1994).Google Scholar
12. Bales, G. S. and Chrzan, D. C., Dynamics of irreversible island growth during submonolayer epitaxy, Phys. Rev. B 50, 60576067, (1994).Google Scholar
13. Balazs, L., Fleury, V., Duclos, F. and Herpen, A.Van, Fractal Growth of silicon-rich domains during annealing of aluminum thin films deposited on silica, Phys. Rev. E 54, 599604, (1996).Google Scholar