Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-24T00:12:58.844Z Has data issue: false hasContentIssue false

In Situ Auger Spectroscopy Investigation of InP Surfaces Treated in RF Hydrogen and Hydrogen/Methane/Argon Plasmas

Published online by Cambridge University Press:  15 February 2011

J. E. Parmeter
Affiliation:
Departments 1126, 1322, and 1128, Sandia National Laboratories, Albuquerque, NM, 87185-0601
R. J. Shul
Affiliation:
Departments 1126, 1322, and 1128, Sandia National Laboratories, Albuquerque, NM, 87185-0601
P. A. Miller
Affiliation:
Departments 1126, 1322, and 1128, Sandia National Laboratories, Albuquerque, NM, 87185-0601
Get access

Abstract

We have used in situ Auger spectroscopic analysis to investigate the composition of InP surfaces cleaned in rf H2 plasmas and etched in rf H2/CH4/Ar plasmas. In general agreement with previous results, hydrogen plasma treatment is found to remove surface carbon and oxygen impurities but also leads to substantial surface phosphorus depletion if not carefully controlled. Low plasma exposure times and rf power settings minimize both phosphorus depletion and surface roughening. Surfaces etched in H2/CH4/Ar plasmas can show severe phosphorus depletion in high density plasmas leading to etch rates of ∼ 700 Å/min, but this effect is greatly reduced in lower density plasmas that produce etch rates of 30–400 Å/min.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Parmeter, J. E., J. Phys. Chem. 97, 11530 (1993).Google Scholar
[2] Parmeter, J. E., Shul, R. J.. Miller, P. A., and Howard, A. J., manuscript in preparation.Google Scholar
[3] Malherbe, J. B. and Barnard, W. O., Surface Sci. 255, 309 (1991).Google Scholar
[4] Hofstra, P. G., Thompson, D. A., Robinson, B. J., and Streater, R. W., J. Vac. Sci. Technol. B 11, 985 (1993).Google Scholar
[5] Gallet, D., Hollinger, G., Santinelli, C., and Goldstein, L., J. Vac. Sci. Technol. B 10, 1267 (1992).Google Scholar
[6] Petit, E. J., Houzay, F., and Moison, J. M., Surface Sci. 269/270, 902 (1992).Google Scholar
[7] Chun, Y. J., Sugaya, T., Okada, Y., and Kawabe, M., Jpn. J. Appl. Phys. 32, L287 (1993).Google Scholar
[8] Kikawa, T., Ochiai, I., and Takatani, S., Surface Sci. 316, 238 (1994).Google Scholar
[9] Pearton, S. J., Chakrabarti, U. K., Kinsella, A. P., Johnson, D., and Constantine, C., Appl. Phys. Lett. 56, 1424 (1990).Google Scholar
[10] Constantine, C., Johnson, D., Pearton, S. J., Chakrabarti, U. K., Emerson, A. B., Hobson, W. S., and Kinsella, A. P., J. Vac. Sci. Technol. B 8, 596 (1990).Google Scholar
[11] Pearton, S. J., Chakrabarti, U. K., Perley, A. P., Constantine, C., and Johnson, D., Semicond. Sci. Technol. 6, 929 (1991).Google Scholar
[12] Pearton, S. J., Chakrabarti, U. K., Katz, A., Perley, A. P., Hobson, W. S., and Constantine, C., J. Vac. Sci. Technol. 9, 1421 (1991).Google Scholar
[13] Pearton, S. J., Abernathy, C. R., Kopf, R. F., Ren, F., and Hobson, W. S., J. Vac. Sci. Technol. B 12, 1333 (1994).Google Scholar