Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-20T07:02:33.023Z Has data issue: false hasContentIssue false

Impurity Removing at Dislocations in Float Zone Silicon by Aluminium-Silicon Alloying

Published online by Cambridge University Press:  15 February 2011

I. Perichaud
Affiliation:
Laboratoire de Photoélectricité - EA 882 D.S.O. “Défauts dans les Semi-conducteurs et leurs Oxydes” -, University of Marseille, - F 13397 Marseille Cedex 20 - France
S. Martinuzzi
Affiliation:
Laboratoire de Photoélectricité - EA 882 D.S.O. “Défauts dans les Semi-conducteurs et leurs Oxydes” -, University of Marseille, - F 13397 Marseille Cedex 20 - France
Get access

Abstract

Aluminium-silicon alloying is applied to dislocation-containing FZ silicon samples in order to verify if this external gettering technique is able to remove impurities trapped by these defects. Samples were scratched (front surface), bent and annealed at 750°C for 6h in order to create dislocation arrays. Standard samples and also nickel contaminated samples were investigated by light beam induced current (LBIC) mapping technique before and after alloying at 900°C for 4h with a 1 μm thick aluminium layer deposited on the backside. The LBIC technique detects the features of the dislocation array in agreement with X ray topographs. In the standard samples, the contrast is relatedto an inadvertent contamination of the samples and disappears after gettering. In the contaminated samples, dislocation contrast is higher, the aluminium treatment attenuates strongly the dislocations electrical activity but not so neatly as for the standard samples. This result is explained by the possible microprecipitation of nickel at dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Périchaud, I. and Martinuzzi, S., J. de Phys. III, 2, 313 (1992).Google Scholar
2. Simon, J.J., Périchaud, I., Burle, N., Pasquinelli, M. and Martinuzzi, S., J. Appl. Phys., 80, 4921 (1996).Google Scholar
3. Schröter, W., Seibt, M. and Gilles, D., Mat. Science and Technology 4, 539 (1991).Google Scholar
4. Thomson, R.D. and Tu, K.N., Appl. Phys. Lett. 41, 440, (1982).Google Scholar
5. Sundaresan, R., Burk, D.E. and Fossum, J.G., J. Appl. Phys., 55, 1162 (1984).Google Scholar
6. Martinuzzi, S., Poitevin, H., Zehaf, M. and Zurletto, C., Revue Phys. Appl. 22, 645 (1987).Google Scholar
7. Verhoef, L.A., Michiels, P.P., Sinke, W.C., Denisse, C.M., Hendriks, M., Van Zolingen, R.J.C., Appl. Phys. Lett. 57, 2704 (1990).Google Scholar
8. Natoli, J.Y., Pasquinelli, M., Floret, F. and Martinuzzi, S., J. de Phys. IV, 1, 237 (1991).Google Scholar
9. Porre, O., Pasquinelli, M., Martinuzzi, S. and Périchaud, I., Proc. of 11th European Photovoltaic Solar Energy Conf., Montreux, (Harwood Acad. Pub.) 1992, p. 1053.Google Scholar
10. Sana, P., Rohatgi, A., Kalejs, J.P. and Bell, R.O., Appl. Phys. Lett. 64, (1994).Google Scholar
11. Joshi, S.M., Gösele, U.M. and Tan, T.Y., Mat. Res. Soc. Symp. Proc. vol. 378, (1995), 279.Google Scholar
12. Apel, M., Hanke, I., Schindler, R. and Schröter, W., J. Appl. Phys., 76, 4432 (1994).Google Scholar
13. Weber, E.R., Mc Hugo, S.A. and Hielsmair, H., Solid State Phenomena 47/48, 165 (1995).Google Scholar
14. McHugo, S.A., Hieslmair, H. and Weber, E.R., Applied Physics A (1996)Google Scholar
15. Sveibjörnsson, E.O., Engström, O. and Södervall, U., J. Appl. Phys. 73, 7311 (1993).Google Scholar
16. Martinuzzi, S. and Stemmer, M., Mat. Science and Eng. B24. 152 (1994).Google Scholar