Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-11T09:22:30.308Z Has data issue: false hasContentIssue false

Improvement of the Thermoelectric Properties of the Chimney–Ladder Compounds in the Ru-Mn-Si System

Published online by Cambridge University Press:  31 January 2011

Norihiko L. Okamoto
Affiliation:
n.okamoto@at4.ecs.kyoto-u.ac.jp, Kyoto University, Materials Science and Engineering, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
Yutaka Hashimoto
Affiliation:
hashimo@t01.mbox.media.kyoto-u.ac.jp, Kyoto University, Materials Science and Engineering, Kyoto, Sakyo-ku, Japan
Tatsuya Koyama
Affiliation:
tako@tsuya.mbox.media.kyoto-u.ac.jp, Kyoto University, Department of Materials Science and Engineering, Yoshidahonmachi, Kyoto, Kyoto, 606-8501, Japan
Hiroki Adachi
Affiliation:
hiroki.adachi@materials.mbox.media.kyoto-u.ac.jp, Kyoto University, Department of Materials Science and Engineering, Yoshidahonmachi, Kyoto, Kyoto, 606-8501, Japan
Kyosuke Kishida
Affiliation:
k.kishida@materials.mbox.media.kyoto-u.ac.jp, Kyoto University, Department of Materials Science and Engineering, Sakyo-ku, Kyoto, 606-8501, Japan, +81-75-753-5481, +81-75-753-5461
Katsushi Tanaka
Affiliation:
k.tanaka@materials.mbox.media.kyoto-u.ac.jp, United States
Haruyuki Inui
Affiliation:
haruyuki.inui@materials.mbox.media.kyoto-u.ac.jp, Kyoto University, Department of Materials Science and Engineering, Sakyo-ku, Kyoto, 606-8501, Japan, +81-75-753-5467, +81-75-753-5461
Get access

Abstract

Directionally solidified alloys in the Ru-Mn-Si system exhibit a particular microstructure including columnar compositional variation due to the formation of many different chimney-ladder phases along the growth direction. Despite the existence of the compositional variation, the crystal orientations of the neighboring chimney-ladder phases are preserved. Over the compositional interfaces, the metal sublattice is considered to be continuous while the Si sublattice is not. Heat treatment of the directionally solidified alloy with the nominal composition of Ru0.10Mn0.90Si1.732 at 1100°C coarsens the compositional domains so as to reduce the density of the compositional interfaces. The values of the thermal conductivity increase with the decrease in the density of the compositional interfaces whereas those of the Seebeck coefficient and electrical resistivity are almost unchanged after the heat treatment. It is considered that the thermoelectric properties of the chimney-ladder compounds in the Ru-Mn-Si system can be enhanced by introducing a high density of the compositional interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Venkatasubramanian, R. Siivola, E. Colpitts, T. and O'Quinn, B., Nature 413, 597 (2001).Google Scholar
2 Gottlieb, U. Sulpice, A. Lambert-Andron, B., and Laborde, O. J. Alloys Compd. 361, 13 (2003).Google Scholar
3 Simkin, B. A. Hayashi, Y. and Inui, H. Intermetallics 13, 1225 (2005).Google Scholar
4 Poutcharovsky, D. J. Yvon, K. and Parthe, E. J. Less-Common Met. 40, 139 (1975).Google Scholar
5 Ye, H. Q. and Amelinckx, S. J. Solid State Chem. 61, 8 (1986).Google Scholar
6N. Okamoto, L. Koyama, T. Kishida, K. Tanaka, K. and Inui, H. Acta Mater. 57, 5036 (2009).Google Scholar
7 Koyama, T. Okamoto, N. L. Kishida, K. Tanaka, K. and Inui, H. Mater. Res. Soc. Symp. Proc. 1128, 173 (2009).Google Scholar
8 Migas, D. B. Shaposhnikov, V. L. Filonov, A.B. Borisenko, V. E. and Dorozhkin, N. N. Phys. Rev. B 77 (2008).Google Scholar
9 Simkin, B. A. Ishida, A. Okamoto, N. L. Kishida, K. Tanaka, K. and Inui, H. Acta Mater. 54, 2857 (2006).Google Scholar
10 Kishida, K. Ishida, A. Koyama, T. Harada, S. Okamoto, N. L. Tanaka, K. and Inui, H. Acta Mater. 57, 2010 (2009).Google Scholar
11 Ishida, A. Okamoto, N. L. Kishida, K. Tanaka, K. and Inui, H. Mater. Res. Soc. Symp. Proc. 980, 235 (2007).Google Scholar
12 Okamoto, N. L. Kishida, K. Tanaka, K. and Inui, H. unpublished work.Google Scholar
13 Nolas, G. S. and Goldsmid, H. J. in Thermal Conductivity, edited by Tritt, T. M. (Kluwer Academic / Plenum Publishers, New York, 2004), p. 105.Google Scholar