Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-10T15:35:40.211Z Has data issue: false hasContentIssue false

Improved Electrical and Transport Characteristics of Amorphous Silicon by Enriching with Microcrystalline Silicon

Published online by Cambridge University Press:  16 February 2011

A. Mireshghi
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
W.S. Hong
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
J. Drewery
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
T. Jing
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
S.N. Kaplan
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
H.K. Lee
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
V. Perez-Mendez
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720
Get access

Abstract

We have deposited n-i-p diodes with microcrystalline intrinsic layers for radiation detection applications. The diodes show interesting electrical characteristics which have not been reported before. From TOF Measurement for our best samples we obtained μe values which are about 3 times larger than our standard a-Si:H. for μτ values approximately a factor of 2 improvement was observed. The N*D values derived from hole-onset measurements show lower ionized dangling bond density than normal a-Si:H Material. We have proposed a simple model which can very well explain the experimental results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Veprek, S. and Maracek, V., Solid State Electronics 11, 683 (1968).Google Scholar
2. Uchida, Yushiyuki, Ichimura, Takeshige, Ueno, Masakazu and Heruki, Hiromu, J.J. Appl. Phys. 21, L586 (1982).CrossRefGoogle Scholar
3. Matsumoto, Y., Hirata, G., Tkakura, H., Okamoto, H., and Hamakawa, Y., J. Appl. Phys. 67, 6536 (1990).Google Scholar
4. Yang, L., Chen, L., Wiedeman, S. and Catalano, A., Mat. Res. Soc. Symp. Proc. 283, 463 (1993).CrossRefGoogle Scholar
5. Matsuda, A., in Amorphous Semiconductor Technologies and Devices. Hamakawa, Y. (ed.) JARECT 22 (OHMSHA and North Holand, 1987) pp.111119.Google Scholar
6. Mishima, Y., Miyazaki, S., Hirose, M. and Osaka, Y., Philos. Mag. B, 46, 31 (1982).Google Scholar
7. Chik, K.P., Chan, P. H., Tong, B. Y., Wong, S. K. and John, P. K., Philos. Mag. B, 61, 377 (1990).Google Scholar
8. Hourd, A.C., Melville, D. L. and Spear, W. E., Philos. Mag. B, 64, 533 (1991).CrossRefGoogle Scholar
9. Perez-Méndez, V., in Amorphous and Microcrystalline Semiconductor Devices, edited by Kanicki, J. (Artech House, Boston, 1991) pp. 297330.Google Scholar
10. Mireshghi, A., Cho, G., Drewery, J., Jing, T., Kaplan, S. N., Perez-Mendez, V. and Wildermuth, D., IEEE Trans. Nuc. Sci. NS-39, 635 (1992).Google Scholar
11. Street, R. A., Phys. Rev. B, 27, 4924 (1983).Google Scholar
12. Ishihari, S., He, D., Akasaka, T., Araki, Y., Nakata, M., and Shimizu, I., Mat. Res. Soc. Symp. Proc. 283, 489 (1993).CrossRefGoogle Scholar
13. Qureshi, S., Perez-Mendez, V., Kaplan, S.N., Fujieda, I., Cho, G., and Street, R.A., IEEE Trans. Nucl. Sci. NS-36, 194 (1989).Google Scholar
14. Spear, W.E. and Heintze, M., Philos. Mag. B, 54, 343 (1986).Google Scholar