Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-23T17:06:02.114Z Has data issue: false hasContentIssue false

Improved Carrier Transport in Intermixed GaAs/AlGaAs Laser Structure With Multi-Quantum Wells Cladding

Published online by Cambridge University Press:  10 February 2011

J. H. Teng
Affiliation:
Center for Optoelectronics, EE Department, National Univ. of Singapore, Singapore, 119260
S. J. Chua
Affiliation:
Center for Optoelectronics, EE Department, National Univ. of Singapore, Singapore, 119260 Institute of Material Research and Engineering, 3 Research Link, Singapore, 117602
W. Liu
Affiliation:
Center for Optoelectronics, EE Department, National Univ. of Singapore, Singapore, 119260
X. C. Wang
Affiliation:
Center for Optoelectronics, EE Department, National Univ. of Singapore, Singapore, 119260
H. W. Choi
Affiliation:
Center for Optoelectronics, EE Department, National Univ. of Singapore, Singapore, 119260
J. R. Dong
Affiliation:
Institute of Material Research and Engineering, 3 Research Link, Singapore, 117602
G. Li
Affiliation:
Institute of Material Research and Engineering, 3 Research Link, Singapore, 117602
D. Braddoc
Affiliation:
Ovation Semiconductor, Rochester, MN55906, USA
Get access

Abstract

A GaAs/A1GaAs laser structure with multi-quantum-well cladding layer has been employed to investigate the group III interdiffusion. With this structure the photoluminescence (PL) signals from both the top C doped cladding layers and the laser active region quantum wells can be observed simultaneously. In contrast to the depth dependence of the group III vacancy enhanced interdiffusion, the quantum wells in the thick top cladding layer showed a uniform layer intermixing and the extent of intermixing was less than that observed in the quantum wells of the laser active region. The Al-Ga interdiffusion coefficient, DAl-Ga, of the cladding layer is about 4 times less than that of the active region. A more efficient carrier transport from the cladding layer to the active region in the intermixed sample was deduced from the temperature varied PL spectra. The built-in electric field is proposed to enhance the vacancy diffusion in the active region

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 See for example, Interdiffused quantum-well materials and devices, IEEE J. Sel. Top. Quantum Electron. 4, (1998)Google Scholar
2 Marsh, J. H. and Bryce, A. C., Mater. Sci. Eng. B. 24, 272 (1994).Google Scholar
3 Cohen, R. M., Li, G., Jagadish, C., Burke, P. T., and Gal, M., Appl. Phys. Lett. 73, 803, (1998)Google Scholar
4 Wee, S. F., Chai, M. K., Homewood, K. P., and Gillin, W. P., J. Appl. Phys. 82, 4842, (1997)Google Scholar
5 Dotor, M. L., Recio, M., Golmayo, D. and Briones, F., J. Appl. Phys. 72, 5861, (1992).Google Scholar
6 Li, G., Chua, S. J., Xu, S. J., Wang, X. C., Helmy, A. S., Ke, M. L., and Marsh, J. H., Appl. Phys. Lett. 73, 3393, (1998).Google Scholar
7 Khreis, O. M., Gillin, W. P., Homewood, K. P., Phys. Rev. B 55, 15813, (1997).Google Scholar
8 Mitev, P.. Seshadri, S., Guido, L. J., Schaafsma, D. T. and Christensen, D. H., Appl. Phys. Lett. 73, 3718, (1998).Google Scholar
9 Olmsted, B. L. and Houde-Walter, S. N., Appl. Phys. Lett. 63, 1131, (1993).Google Scholar
10 Szafranek, I., Szafranek, M., Cunningham, B. T., Guido, L. J., Holonyak, N. Jr., and Stillman, G. E., J. Appl. Phys. 68, 5615, (1990).Google Scholar
11 You, H. M., Tan, T. Y., Gosele, U. M., Lee, S. T., Hofler, G. E., Hsieh, K. C., and Holonyak, N. Jr., J. Appl. Phys. 74, 2450, (1993).Google Scholar
12 Guido, L. J., Cunningham, B. T., Nam, D. W., Hsieh, K. C., Plano, W. E., major, J. S. Jr., Vesely, E. J., Sugg, A. R., Holonyak, N. Jr., and Stillman, G. E., J. Appl. Phys. 67, 2179 (1990).Google Scholar
13 Ayling, S. G., Bryce, A. C., Gontijo, I, Marsh, J. H., and Roberts, J. S., Semicond. Sci. Technol. 9, 2149, (1994).Google Scholar
14 Dao, L. V., Johnston, M. B., Gal, M., Fu, L., Tan, H. H., and Jagadish, C., Appl. Phys. Lett. 73, 3408, (1998).Google Scholar