Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-22T23:17:23.672Z Has data issue: false hasContentIssue false

Improved Aluminum Nitride Thin Films Grown By Mocvd From Tritertiarybutylaluminum And Ammonia

Published online by Cambridge University Press:  15 February 2011

T. Metzger
Affiliation:
Lehrstuhl für Angewandte Mineralogie und Geochemie, Technical University Munich Lichtenbergstr. 4, 85747 Garching, Germany
E. Born
Affiliation:
Lehrstuhl für Angewandte Mineralogie und Geochemie, Technical University Munich Lichtenbergstr. 4, 85747 Garching, Germany
R. Stimmer
Affiliation:
Siemens Corporate Research and Development, Siemens AG Otto-Hahn-Ring 6, 81739 Munich, Germany
W. Rieger
Affiliation:
Walter Schottky Institution, Technical Universiy Munich Am Coulombwall, 85747 Garching, Germany
R. Dimitrov
Affiliation:
Walter Schottky Institution, Technical Universiy Munich Am Coulombwall, 85747 Garching, Germany
D. Lentz
Affiliation:
Walter Schottky Institution, Technical Universiy Munich Am Coulombwall, 85747 Garching, Germany
H. Angerer
Affiliation:
Walter Schottky Institution, Technical Universiy Munich Am Coulombwall, 85747 Garching, Germany
O. Ambacher
Affiliation:
Walter Schottky Institution, Technical Universiy Munich Am Coulombwall, 85747 Garching, Germany
M. Stutzmann
Affiliation:
Walter Schottky Institution, Technical Universiy Munich Am Coulombwall, 85747 Garching, Germany
Get access

Abstract

AIN thin films were grown on c-plane sapphire by metalorganic chemical vapor deposition from tritertiarybutylaluminum and ammonia at 1050°C. These films exhibit a full width at half maximum of the 002 X-ray rocking curve below 200 arcsec indicating high epitaxial quality. By measuring asymmetric reflections, a structural disorder of the lattice mainly due to edge dislocations can be observed. For further investigations, atomic force microscopy and photothermal deflection spectroscopy were performed. In order to study the effect of increasing AIN layer thickness on the optical and structural properties of GaN in an AIN/GaN heterostructure, AIN thin films with increasing thickness ranging from 0.02 to 0.36 μm were used as sublayers for the deposition of 0.75 μm thick GaN layers. Photoluminescence, micro- Raman and X-ray diffraction measurements confirm the relaxation of biaxial compressive stress in the GaN layers due to different thermal expansion coefficients by increasing AIN layer thickness. The pressure dependence of the band gap shift was determined as 24 meV/GPa for biaxial compressive stress. Our results indicate that the growth of AIN with metal organic chemical vapor deposition from tritertiarybutylaluminum and ammonia is a promising method for obtaining high quality epitaxial films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Akasaki, I., Amano, H., Koide, Y., Hiramatsu, K. and Sawaki, N., J. Cryst. Growth 98, 209 (1989).Google Scholar
2. Moustakas, T. D., Lei, T. and Molnar, R. J., Physica B 185, 36 (1993).Google Scholar
3. Kuramata, A., Horino, K., Domen, K., Shinohara, K. and Tanahashi, T., Appl. Phys. Lett. 67, 2521 (1995).Google Scholar
4. Chaudhuri, J., Thokala, R., Edgar, J. H. and Sywe, B. S., J. Appl. Phys. 77, (1995) 6263.Google Scholar
5. Morita, M., Isogai, S., Shimizu, N., Tsubouchi, K. and Mikoshiba, N., Jpn. J. Appl. Phys. 19, L173 (1981).Google Scholar
6. Khan, M. Asif, Kuznia, J. N., Skogman, R. A., Olson, D. T., Millan, M. Mac and Choyke, W. J., Appl. Phys. Lett. 61, 2539 (1992).Google Scholar
7. Jones, A. C., Auld, J., Rushworth, S. A. and Critchlow, G. W., J. Cryst. Growth 135, 285 (1994).Google Scholar
8. Schuster, M. and Göbel, H., J. Phys. D: Appl. Phys. 28, A270 (1995).Google Scholar
9. Jackson, W. B., Amer, N. M., Boccara, A. C. and Fournier, D., Appl. Optics 20, 1333 (1981).Google Scholar
10. Ambacher, O., Rieger, W., Ansmann, P., Angerer, H., Moustakas, T. D. and Stutzmann, M., Solid State Communications 97, 365 (1996).Google Scholar
11. Kapolnek, D., Wu, X. H., Heying, B., Keller, S., Keller, B. P., Mishra, U. K., DenBaars, S. P. and Speck, J. S., Appl. Phys. Lett. 67, 1541 (1995).Google Scholar
12. Heying, B., Wu, X. H., Keller, S., Li, Y., Kapolnek, D., Keller, B. P., DenBaars, S. P. and Speck, J. S., Appl. Phys. Lett. 68, 643 (1996).Google Scholar
13. Zhu, Q., Botchkarev, A., Kim, W., Aktas, Ö., Salvador, A., Sverdlov, B., Morkoc, H., Tsen, S.-C. Y. and Smith, David J., Appl. Phys. Lett. 68, 1141 (1996).Google Scholar
14. Pacesova, S. and Jastrabik, L., Czech. J. Phys. B 29, 913 (1979).Google Scholar
15. Pastrnak, J., Pacesova, S. and Roskovcova, L., Czech. J. Phys. B 24, 1149 (1974).Google Scholar
16. Abaidia, S., Serin, V., Zanchi, G., Kihn, Y. and Sevely, J., Philosophical Magazine A 72, 1657 (1995).Google Scholar
17. Lagerstedt, O. and Monemar, B., J. Appl. Phys. 45, 2266 (1974).Google Scholar
18. Chung, B. C. and Ghershenzon, M., J. Appl. Phys. 72, 651 (1992).Google Scholar
19. Maruska, H. P. and Tietjen, J. J., Appl. Phys. Lett. 15, 327 (1969).Google Scholar
20. Detchprom, T., Hiramatsu, K., Itoh, K. and Akasaki, I., Jpn. J. Appl. Phys. 31, L1454 (1992).Google Scholar
21. Rieger, W., Metzger, T., Angerer, H., Dimitrov, R., Ambacher, O. and Stutzmann, M., Appl. Phys. Lett. 68, 970 (1996).Google Scholar
22. Perlin, P., Gorczyca, I., Christensen, N. E., Grzegory, I., Teisseyre, H. and Suski, T., Phys. Rev. B 45, 13307 (1992).Google Scholar