Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-14T22:03:02.333Z Has data issue: false hasContentIssue false

Imprint in Ferroelectric Thin Films Caused by Screening of an Electric Field in a Thin Surface Layer

Published online by Cambridge University Press:  17 March 2011

Michael Grossmann
Affiliation:
IWE II, RWTH University of Technology, 52056 Aachen, Germany
Oliver Lohse
Affiliation:
IWE II, RWTH University of Technology, 52056 Aachen, Germany
Dierk Bolten
Affiliation:
IWE II, RWTH University of Technology, 52056 Aachen, Germany
Ulrich Boettger
Affiliation:
IWE II, RWTH University of Technology, 52056 Aachen, Germany
Rainer Waser
Affiliation:
FZJ Research Center Juelich, 52425 Juelich, Germany
Get access

Abstract

Imprint describes an aging effect in ferroelectric thin films which manifests itself by a shift of the P-V hysteresis loop on the voltage axis. In this paper a mechanism is described which attributes imprint to the screening of a large electric field within a thin surface layer by electronic charges. The field at the surface arises due to the existence of a thin surface layer in which the spontaneous ferroelectric polarization is suppressed. In the course of aging this field is gradually screened by electronic charges which are generated by a Frenkel-Poole effect and then become trapped near the electrode-thin-film interface causing the shift of the hysteresis loop. A numerical simulation based on this model allows a quantitative description of the imprint effect as a function of various experimental parameters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Scott, J. F. and Araujo, C. A. Paz de, Science 246, 1400 (1989).Google Scholar
2. Araujo, C. A. Paz de, Cuchiaro, J. D., McMillan, L. D., Scott, M. C., and Scott, J. F., Nature 374, 627 (1995).Google Scholar
3. Warren, W., Tuttle, B., Dimos, D., Pike, G., Al-Shareef, H., Ramesh, R., and Evans, J., Jap. J. Appl. Phys., 1521 (1996).Google Scholar
4. Grossmann, M., Lohse, O., Bolten, D., Boettger, U., Waser, R., Hartner, W., Kastner, M., and Schindler, G., Appl. Phys. Lett. 76, 363 (2000).Google Scholar
5. Merz, W., Phys. Rev. A 91, 513 (1953).Google Scholar
6. Carl, K. and Härdtl, K., Ferroelectrics 17, 473 (1978).Google Scholar
7. Arlt, G. and Neumann, H., Ferroelectrics 87, 109 (1988).Google Scholar
8. Warren, W., Dimos, D., Pike, G., Vanheusden, K., and Ramesh, R., Appl. Phys. Lett. 67, 1689 (1995).Google Scholar
9. Kim, S.-H., Woo, H.-J., Ha, J., Hwang, C.S., Kim, H.R., and Kingon, A.I., Appl. Phys. Lett. 78, 2885 (2001).Google Scholar
10. Dimos, D., Warren, W., Sinclair, M., Tuttle, B., and Schwartz, R., J. Appl. Phys. 76, 4305 (1994).Google Scholar
11. Fridkin, V. M., Photoferroelectrics, Solid State Sciences (Springer-Verlag, 1979).Google Scholar
12. Grossmann, M., Lohse, O., Bolten, D., Waser, R., Hartner, W., Schindler, G., Dehm, C., and Nagel, N., Mat. Res. Soc. Symp. Proc. 541, 269 (1999).Google Scholar
13. Grossmann, M., Lohse, O., Bolten, D., Boettger, U., Schneller, T., and Waser, R., unpublished (2001).Google Scholar
14. Känzig, W., Phys. Rev. A 98, 549 (1955).Google Scholar
15. Christen, H.-M., Mannhart, J., Williams, E., and Gerber, C., Phys. Rev. B 49, 12095 (1994).Google Scholar
16. Cillessen, J., Prins, M., and Wolf, R., J. Appl. Phys. 81, 2777 (1997).Google Scholar
17. Tagantsev, A. and Stolichnov, I., Appl. Phys. Lett. 74, 1326 (1999).Google Scholar
18. Bratkovsky, A.M. and Levanyuk, A. P., Phys. Rev. Lett. 84, 3177 (2000).Google Scholar
19. Frey, M.H., Xu, Z., Han, P., and Payne, D., Ferroelectrics 206–207, 337 (1998).Google Scholar
20. Shaw, T.M., Suo, Z., Huang, M., Liniger, E., Laibowitz, R.B., and Baniecki, J.D., Appl. Phys. Lett. 75, 2129 (1999).Google Scholar
21. Streiffer, S., Basceri, C., Parker, C., Lash, S., and Kingon, A., J. Appl. Phys. 86, 4565 (1999).Google Scholar
22. Sze, S.M., Physics of Semiconductor Devices (Wiley and Sons, 1981).Google Scholar
23. Grossmann, M., Lohse, O., Schneller, T., Bolten, D., Boettger, U., Rodriguez, J., Kohlstedt, H., and Waser, R., Int. Ferroelectrics, in press (2001).Google Scholar
24. Cross, J., Fujiki, M., Tsukada, M., Matsuura, K., Otani, S., Tomotani, M., Kataoka, Y., Kotaka, Y., and Goto, Y., Integ. Ferroelectrics 25, 265(1999).Google Scholar
25. Stolichnov, I., Tagantsev, A., Setter, N., Cross, J., and Tsukada, M., Appl. Phys. Lett. 74, 3552 (1999).Google Scholar
26. Morimoto, T., Hidaka, O., Yamakawa, K., Ariusmi, O., Kanaya, H., Iwamoto, T., Kumura, Y., Kunishima, I., and Tanaka, A., Jpn. J. Appl. Phys. 39, 2110 (2000).Google Scholar
27. Lee, J., Thio, C., Bhattacharya, M., and Desu, S., Mat. Res. Soc. Symp. Proc. 261, 241 (1995).Google Scholar
28. Desu, S. and Vendik, O., Int. Ferroelectrics 28, 175 (2000).Google Scholar