Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-17T02:44:22.099Z Has data issue: false hasContentIssue false

Implanted Dopant-Defect Interactons in GaAs

Published online by Cambridge University Press:  25 February 2011

S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, N. J. 07974
J. S. Williams
Affiliation:
Royla Melbourne Institute of Technology, Melbourne, Vic 3000 Australia
K. T. Short
Affiliation:
AT&T Bell Laboratories, Murray Hill, N. J. 07974
S. T. Johnson
Affiliation:
Royla Melbourne Institute of Technology, Melbourne, Vic 3000 Australia
J. M. Gibson
Affiliation:
AT&T Bell Laboratories, Murray Hill, N. J. 07974
D. C. Jacobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, N. J. 07974
J. M. Poate
Affiliation:
AT&T Bell Laboratories, Murray Hill, N. J. 07974
D. O. Boerma
Affiliation:
University of Groningen, 9718 CM Groningen, The Netherlands.
Get access

Abstract

The implantation temperature dependence of dopant solubility and electrical activity was investigated for Sn, Cd and Te ions in GaAs. Implantation doses of 5×1012 – 5×1015 cm−2 were performed in the temperature range from LN2 to 400°C, followed by rapid thermal annealing (950°C) or furnace annealing between 650°C and 850°C. Solubilities above 1020 cm−3 were obtained for all of the species, with a peak value of 2.5×1021 cm−3 for Te after 850°C furnace annealing. However essentially no correlation existed between dopant solubility and electrical activity or between electrical activity and the high density of defects remaining after many of the annealing cycles. This emphases the role of fine scale, point defect complexes in controlling the electrical activity of implanted dopants in GaAs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Donnelly, J. P., Nucl. Instr. Meth. 182/183 553 (1981).Google Scholar
2. Williams, J. S. in “Laser Annealing of Semiconductors,” ed. Poate, J. M. and Mayer, J. W. (Academic Press NY 1982) p. 383.Google Scholar
3. Stephens, K. G., Nucl. Instr. Meth. 209/210 589 (1983).Google Scholar
4. Nishi, H., Nucl. Instr. Meth. B718 395 (1985).Google Scholar
5. Eisen, F. H. in “Ion Implantation and Beam Processing” ed. Williams, J. S. and Poate, J. M. (Academic Press, Sydney 1984) Chapter 10.Google Scholar
6. Takai, M., Gawo, K., Masuda, K. and Namba, S., Jap. J. Appl. Phys. 14 935 (1975).Google Scholar
7. Orrman-Rossiter, K. G., Johnson, S. T. and Williams, J. S., Nucl. Instr. Meth. B 7/8 448 (1985).Google Scholar
8. Morgan, D. V. and Eisen, F. H. in “Gallium Arsenide” ed. Howes, M. J. and Morgan, D. V. (Wiley and Sons NY 1985) Chapter 5.Google Scholar
9. Pearton, S. J., Hull, R., Jacobson, D. C., Poate, J. M. and Williams, J. S. Appl. Phys. Lett. 48 38 (1986).Google Scholar
10. Sadana, D. K., Nucl. Instr. Meth. B 7/8 375 (1985).Google Scholar
11. Sette, F., Pearton, S. J., Rowe, J. E., Poate, J. M., and Stohr, J., Phys. Rev. Lett. 56 2637 (1986).Google Scholar
12. Sette, F., Pearton, S. J., Rowe, J. E. and Poate, J. M., Nucl. Instr. Meth. B19/20 408 (1987).Google Scholar
13. Wolfe, C. M. and Stillman, G. E., Appl. Phys. Lett. 27 564 (1975).Google Scholar