Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-20T13:26:56.007Z Has data issue: false hasContentIssue false

Implant Dose and Spike Anneal Temperature Relationships

Published online by Cambridge University Press:  21 March 2011

K. K. Bourdelle
Affiliation:
Agere Systems, Orlando FL 32819
A. T. Fiory
Affiliation:
Agere Systems, Murray Hill NJ 07974
H.-J. L. Gossmann
Affiliation:
Agere Systems, Murray Hill NJ 07974
S. P. McCoy
Affiliation:
Vortek Industries, Vancouver, B.C., CanadaV6P6T7
Get access

Abstract

The method of ion implantation and spike annealing for preparing shallow junctions suitable for the extension regions bridging the channel and source/drain contacts of CMOS transistors are studied by annealing blanket implants. Junction depths at a given sheet resistance for low energy B implants are minimized for the combination of a fast ramp with a sharp-spike anneal. This is shown to be physically based on activation energy phenomenology. The fraction of electrically activated B is insensitive to implant dose, unlike the case of transient enhanced diffusion. Arsenic implants show higher activation fraction than comparably annealed P implants, without the large transient enhanced diffusion which is attributed to P and Si-interstitial coupled diffusion. For targeted sheet resistance and junction depth, spiking temperature trends lower with implant dose, concomitant with decreasing fraction of activated dopant.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gossmann, H.-J., Rafferty, C.S., and Keys, P., Mat. Res. Soc. Symp. Proc. 610, B1.2.1 (2000).Google Scholar
2. Saito, S., Shishiguchi, S., Mineji, A., and Matsuda, T., Mat. Res. Soc. Symp. Proc. 532, 3 (1998).Google Scholar
3. Fiory, A.T., Bourdelle, K.K., Roy, P.K., Appl. Phys. Lett. 78, 1071 (2001).Google Scholar
4. Fiory, A.T. and Bourdelle, K.K., Appl. Phys. Lett. 74, 2658 (1999).Google Scholar
5. Agarwal, A., Gossmann, H.-J., Eaglesham, D.J., Herner, S.B., Fiory, A.T., Haynes, T.E., Appl. Phys. Lett 74, 2435 (1999); ibid., p. 2331.Google Scholar
6. Agarwal, A., Gossmann, H.-J., Eaglesham, D. J., Pelaz, L., Herner, S. B., Jacobson, D. C., Haynes, T. E., Simonton, R., Mater. Sci. in Semicond. Proc. 1, 17 (1998).Google Scholar
7. Seidel, T.E. and MacRae, U., Radiation Effects 7, 1 (1971).Google Scholar
8. Rafferty, C. S., Gilmer, G. H., Jaraiz, M., Eaglesham, D. J., and Gossmann, H.-J., Appl. Phys. Lett. 68, 2395 (1996).Google Scholar