Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-11T23:20:29.686Z Has data issue: false hasContentIssue false

Impact of temperature and breakdown statistics on reliability predictions for ultrathin oxides

Published online by Cambridge University Press:  10 February 2011

G. Groeseneken
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium, E-mail: guido.groeseneken@imec.be
R. Degraeve
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium, E-mail: guido.groeseneken@imec.be
B. Kaczer
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium, E-mail: guido.groeseneken@imec.be
H.E. Maes
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium, E-mail: guido.groeseneken@imec.be
Get access

Abstract

This paper discusses the evolution in the degradation and breakdown behaviour of ultra-thin oxides when scaling the oxide thickness into the sub-4 nm range for future CMOS technology generations. It will be shown that changes in the breakdown statistics, which can be explained by a percolation model for breakdown, lead to an increased area dependence of the time-tobreakdown. This has to be taken into account when predicting the oxide reliability. Also the impact of the test methodology, the relevance of a so-called polarity gap in the charge-tobreakdown and its consequences for reliability testing, are highlighted. Moreover, a strong increase in the temperature dependence of breakdown, especially for sub-3 nm oxides, is demonstrated and the impact of temperature on trap generation and critical trap density at breakdown is discussed. Finally it is shown that the combined effects of all these phenomena might lead to oxide reliability becoming a potential showstopper for further technology scaling.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Degraeve, R., Groeseneken, G., Bellens, R., Ogier, J.L., Depas, M., Roussel, Ph., Maes, H.E., IEEE Trans. Elec. Dev., vol. 45, No. 4, pp. 904911, 1998.Google Scholar
[2]Nigam, T., Degraeve, R., Groeseneken, G., Heyns, M. and Maes, H.E., Proc. Intern. Rel. Phys. Symp. (IRPS), p. 62, 1998Google Scholar
[3]Wu, E., Nowak, E., Aitken, J., Abadeer, W., Han, L.K., Lo, S., IEDM Tech. Dig., p. 187, 1998.Google Scholar
[4]Wolters, D.R., Verwey, J.F., Instabilities in silicon devices, Chapter 6, Elsevier Science Publishers B.V., 1986.Google Scholar
[5]Schuegraf, K. F., Hu, C., J. Appl. Phys., vol. 76, no. 6, pp. 36953700, 1994.Google Scholar
[6]DiMaria, D.J., Cartier, E., Arnold, D., J. Appl. Phys., vol. 73, no. 7, pp. 3367, 1993.Google Scholar
[7]DiMaria, D. J., J. Appl. Phys., vol. 81, no.7, p3220, 1997.Google Scholar
[8]Nigam, T., Depas, M., Degraeve, R., Heyns, M.M., Groeseneken, G., Extended abstracts SSDM, pp. 9091, 1997.Google Scholar
[9]Pangon, N., Degraeve, R., Roussel, P. J., Groeseneken, G. and Maes, H. E., “A new physically-based model for temperature acceleration of time-to-breakdown,” presented at 1998 SISC.Google Scholar
[10]DiMaria, D. J. and Stathis, J. H., Appl. Phys. Lett. vol 74, p. 1752, 1999.Google Scholar
[11]Kaczer, B., Degraeve, R., Pangon, N., Nigam, T., and Groeseneken, G., Microelectronics Engineering, vol. 48, p. 4750, 1999Google Scholar
[12]Degraeve, R., Pangon, N., Kaczer, B., Nigam, T., Groeseneken, G., and Naem, A., “Temperature acceleration of oxide breakdown and its impact on ultra-thin gate oxide reliability,” VLSI Technology Symposium, Kyoto, Japan, 1999.Google Scholar
[13]Salvo, B. De, Ghibaudo, G., Pananakakis, G., Guillaumot, B., Candelier, P., 1998 ESSDERC Proc., p. 228, 1998.Google Scholar
[14]Kaczer, B., Degraeve, R., Pangon, N., Nigam, T., and Groeseneken, G., Proceedings ESSDERC 1999, p. 356, Editions Frontieres, Leuven, Belgium, 1999.Google Scholar
[15]Kaczer, B., Degraeve, R., Pangon, N., and Groeseneken, G., “Non-equivalence of temperatureaccelerated electrical stress of thin silicon dioxide films,” submitted to Appl. Phys. Lett., 1999Google Scholar
[16]SIA, “National technology roadmap for semiconductors,” 1997 Edition, 1997.Google Scholar
[17]Stathis, J. H. and DiMaria, D. J., 1998 IEDM Tech. Dig., p. 167, 1998.Google Scholar