Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T12:20:54.977Z Has data issue: false hasContentIssue false

The Impact of Gas Phase and Surface Chemical Reactions on Step Coverage in Lpcvd

Published online by Cambridge University Press:  22 February 2011

Gregory B. Raupp
Affiliation:
Department of Chemical, Bio and Materials Engineering Center for Solid State Electronics Research Arizona State University, Tempe, Arizona 85287–6006
Timothy S. Cale
Affiliation:
Department of Chemical, Bio and Materials Engineering Center for Solid State Electronics Research Arizona State University, Tempe, Arizona 85287–6006
Get access

Abstract

The characteristic step coverage behavior which a given LPCVD process exhibits depends on the nature of the controlling gas phase and/or surface chemical reactions. Physically-based ballistic transport and reaction film profile evolution simulation has provided a structure wherein the origins of step coverage limitations can be understood in the context of the interaction of transport and the controlling chemistry. Based on comparisons of the simulations to literature and in-house experimental data, we have categorized LPCVD mechanisms into one of three types. In heterogeneous deposition, conformal step coverage can usually be found under at least some process conditions. Step coverage typically degrades with increasing deposition temperature. In homogeneous precursor-mediateddeposition, a reactive intermediate is formed in the gas-phase above the wafer surface, resulting in poor to moderate step coverage. Step coverage may or may not degrade with increasing temperature. In byproduct-inhibited deposition, a gas-phase byproduct generated via a surface reaction readsorbs on the growing film surface and slows the deposition rate, yielding a poor to moderate, relatively temperature-insensitive step coverage. Poor step coverage is manifested in a marked film thickness discontinuity at the feature mouth, with a relatively uniform film down the feature sidewalls.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Cale, T. S. and Raupp, G. B., J. Vac. Sci. Tech. B 8, 649 (1990).Google Scholar
[2] Cale, T. S. and Raupp, G. B., J. Vac. Sci. Tech. B 8, 1242 (1990).Google Scholar
[3] Cale, T. S., Raupp, G. B. and Gandy, T. H., J. Vac. Sci. Tech. A 10, 1128 (1992).Google Scholar
[4] Islamraja, M. M., Capelli, M. A., McVittie, J. P. and Saraswat, K. C., J. Appl. Phys. 70, 7137 (1991).Google Scholar
[5] Singh, V. K., Shaqfeh, E. S. G. and McVittie, J. P., J. Vac. Sci. Tech. B 10, 1091 (1992).Google Scholar
[6] Hsieh, J. J. and Joshi, R. V., in Advanced Metallization for ULSI Applications, Rana, V. V. S., Joshi, R. V. and Ohdomari, I., eds., MRS, 1992, p. 77.Google Scholar
[7] EVOLVE was developed by Cale, T. S. at Arizona State University with funding from the Semiconductor Research Corporation and the National Science Foundation.Google Scholar
[8] Ross, D. S., J. Electrochem. Soc. 139,1714 (1993).Google Scholar
[9] McConica, C. M. and Krishnamani, K., J. Electrochem. Soc. 133, 2542 (1986).Google Scholar
[10] Cale, T. S., Raupp, G. B., Chaara, M. B. and Shemansky, F. A., Thin Solid Films 220, 66 (1992).Google Scholar
[11] Raupp, G. B. and Cale, T. S., J. Inst. Electron. Telecomm. Engin. (India) 37, 206 (1991).Google Scholar
[12] Taylor, J. B. and Langmuir, I., Phys. Rev. 33, 423 (1933).CrossRefGoogle Scholar
[13] D'Evelyn, M. P., Nelson, M. M. and Engel, T., Surface Sci. 186, 75 (1987).Google Scholar
[14] George, S. M. private communication.Google Scholar
[15] Gupta, P., Coon, P. A., Koehler, B. G. and George, S. M., J. Chem. Phys. 93, 2827 (1990).Google Scholar
[16] Gupta, P., Coon, P. A., Koehler, B. G., Wise, M. L. and George, S. M., Mat. Res. Soc. Symp. Proc. 204, 311 (1991).Google Scholar
[17] Koehler, B. G., Mak, C. H., Arthur, D. A., Coon, P. A. and George, S. M., J. Chem. Phys. 89, 1709 (1988).Google Scholar
[18] Buss, R. J., Ho, P., Breiland, W. G. and Coltrin, M. E., J. Appl. Phys. 63, 2808 (1988).Google Scholar
[19] Coltrin, M. E., Kee, R. J. and Evans, G. H., J. Electrochem. Soc. 136(3), 819 (1989).Google Scholar
[20] Giunta, C. J., Chapple-Sokol, J. D. and Gordon, R. G., J. Electrochem. Soc. 137, 3237 (1989).Google Scholar
[21] Becker, F. S., Pawlik, D., Anzinger, H. and Spitzer, A., J. Vac. Sci. Tech. B 5, 1555 (1987).Google Scholar
[22] Schlote, J., Schröder, K.-W. and Drescher, K., J. Electrochem. Soc. 138, 2393 (1991).CrossRefGoogle Scholar
[23] Raupp, G. B., Shemansky, F. A. and Cale, T. S., J. Vac. Sci. Tech. B 10, 2422 (1992).Google Scholar
[24] Cale, T. S., Raupp, G. B., Hillman, J. T. and Rice, M. J. Jr., in Advanced Metallization for ULSI Applications 1992, Cale, T. S. and Pintchovski, F., eds., MRS, 1993, p. 195.Google Scholar
[25] Cale, T. S., Chaara, M. B., Raupp, G. B. and Raaijmakers, I. J., Thin Solid Films 236(2), 294 (1993).Google Scholar