Hostname: page-component-7479d7b7d-qlrfm Total loading time: 0 Render date: 2024-07-12T14:41:15.006Z Has data issue: false hasContentIssue false

Imaging of the Carrier Density of States in Low Dimensional Structures Using Electrostatic Force Microscopy

Published online by Cambridge University Press:  10 February 2011

D. Gekhtman
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
Z. B. Zhang
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
D. Adderton
Affiliation:
Digital Instruments, Santa Barbara, CA 93117
M. S. Dresselhaus
Affiliation:
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139
G. Dresselhaus
Affiliation:
Francis Bitter Magnet Lab, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

In this work we show that scanning probe electrostatic force microscopy (EFM) can be applied to low dimensional electronic nanostructures for imaging the density of states of quantum confined carriers. The results on EFM studies are presented for quasione- dimensional (ID) Bi quantum wire arrays and quasi-two-dimensional (2D) GaAs/AlxGa1-x As multiple quantum well structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Binnig, G., Rohrer, H., Gerber, Ch., and Weibel, E., Phys. Rev. Lett. 49, 57 (1982).CrossRefGoogle Scholar
2. Binnig, G., Quate, C., and Gerber, Ch., Phys. Rev. Lett. 56, 930 (1986).CrossRefGoogle Scholar
3. Martin, Y., Abraham, D.W., and Wickramasinghe, H. Kumar, Appl. Phys. Lett. 52, 1103 (1988); J. E. Stem, B.D. Terris, H. J. Mamin, and R. Rugar, Appl. Phys. Lett. 53, 2717 (1988).CrossRefGoogle Scholar
4. The National Technology Roadmap for Semiconductors, Semiconductor Industry Association, San Jose, CA (1994).Google Scholar
5. Terris, B.D., Stem, J.E., Rugar, R., and Mamin, H. J., Phys. Rev. Lett. 63, 2669 (1989).CrossRefGoogle Scholar
6. Henning, A.K. and Hochwitz, T., Mater. Sci. Eng. B42, 88 (1996).CrossRefGoogle Scholar
7. Nyffenegger, R.M., Penner, R., and Schierle, R., Appl. Phys. Lett. 71, 1878 (1997).CrossRefGoogle Scholar
8. For details on the Bi wire array fabrication see Zhang, Z.B., Ying, J.Y. and Dresselhaus, M.S., J. Mater. Res. 13, 1745 (1998).CrossRefGoogle Scholar
9. For example, Marti, O., and Colchero, J., in “Forces in Scanning Probe Methods”, ed. by Güntherodt, H.J., Anselmetti, D., and Meyer, E., NATO ASI Series (1995).Google Scholar
10. Lift-mode operation manual, Digital Instrument Inc., Santa Barbara, CA (1996).Google Scholar
11. Albrecht, T.R., and Quate, C.F., J. Appl. Phys. 62, 2599 (1987).CrossRefGoogle Scholar
12. Dürig, U., Züger, O., and Pohl, D.W., Phys. Rev. Lett. 65, 349 (1990).CrossRefGoogle Scholar
13. For example, “Handbook of Optical Constants of Solids”, ed. by Palik, E.D. Academic Press, San Diego (1991).Google Scholar
14. For a review of quantum capacitance see Büttiker, M., J. Phys. Condensed Matter 5, 9361 (1993).CrossRefGoogle Scholar
15. The classical boundary problem is considered in Maxwell, J.C., “Treatise on Electricity and Magnetism”, Oxford (1904)Google Scholar