Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-20T03:22:11.405Z Has data issue: false hasContentIssue false

Identification of Carbon-related Bandgap States in GaN Grown by MOCVD

Published online by Cambridge University Press:  01 February 2011

A. Armstrong
Affiliation:
Department of Electrical Engineering, The Ohio State University, Columbus, OH 43210
A. R. Arehart
Affiliation:
Department of Electrical Engineering, The Ohio State University, Columbus, OH 43210
S. A. Ringel
Affiliation:
Department of Electrical Engineering, The Ohio State University, Columbus, OH 43210
B. Moran
Affiliation:
Materials Department and Electrical and Computer Engineering Department, University of California, Santa Barbara, CA 93016
S. P. DenBaars
Affiliation:
Materials Department and Electrical and Computer Engineering Department, University of California, Santa Barbara, CA 93016
U. K. Mishra
Affiliation:
Materials Department and Electrical and Computer Engineering Department, University of California, Santa Barbara, CA 93016
J. S. Speck
Affiliation:
Materials Department and Electrical and Computer Engineering Department, University of California, Santa Barbara, CA 93016
Get access

Abstract

Carbon doping of GaN is of great interest in part because it has been shown to result in semi-insulating (SI) behavior. However, determination of the bandgap states and hence the exact mechanism responsible for the SI behavior is, to date, an unresolved issue. A key impediment is that the presumed C acceptor levels are likely near the minority carrier (valence) bandedge of otherwise background n-type GaN, and hence their precise detection by usual methods is difficult. In this paper, we exploit the inherent ability of deep level optical spectroscopy (DLOS) to detect states near the minority carrier band edge, as well as potentially deep states associated with C in background n-type GaN. This is accomplished by comparing unintentionally doped (uid) GaN grown by atmospheric pressure (AP) MOCVD, which has residual n-type conductivity, with LP MOCVD GaN that incorporates a large concentration of C for both uid and intentionally Si co-doped conditions. The results show the emergence of a shallow state at Ec - 3.28 eV (Ev + 0.16 eV) for the LP samples with a minimum concentration of 3.6 × 1016 cm-3 that efficiently compensates Si donors for the co-doped sample, and results in semi-insulating behavior for the uid-LP sample. In contrast, this state is not observed for the AP GaN material, which incorporates a factor of ∼10 times less C, and instead only the expected residual Mg acceptor level at Ec - 3.22 eV is observed. Additionally, a state at Ec - 1.35 eV, near the theoretically expected C split-interstitial level in n-type GaN, is observed to increase significantly in concentration with increased C concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Seager, C. H., Wright, A.F., Yu, J., and Goetz, W., J. Appl. Phys. 92, 6553 (2002)Google Scholar
2. Tang, H., Webb, J. B., Bardwell, J. A., Raymond, S., Salzman, J., and Uzman-Saguy, C., Appl. Phys. Lett. 78, 757 (2001)Google Scholar
3. Klein, P. B., Binari, S. C., Ikossi, K., Wickenden, A. E., Kolske, D. D., and Henry, R. L., Appl. Phys. Lett. 79, 3527 (2001)Google Scholar
4. Armitage, R., Hong, W., Yang, Q., Feick, H., Gebauer, J., Weber, E. R., Hautakangas, S. and Saarinen, K., Appl. Phys. Lett. 82, 3457 (2003)Google Scholar
5. Parrish, G., Keller, S., DenBaars, S.P., and Mishra, U. K., J. Elec. Mat. 29, 15 2000 Google Scholar
6. Wu, X. H., Fini, P., Tarsa, E. J., Heying, B., Keller, S., Mishra, U.K., DenBaars, S. P., and Speck, J. S., J. Crystal Growth 189–190, 431 (1998)Google Scholar
7. Hierro, A., Kwon, D., Ringel, S. A., Rubini, S., Pelucchi, E. and Franiosi, A., J. Appl. Phys. 87, 730 (2003)Google Scholar
8. Hierro, A., Kwon, D., Ringel, S. A., Hansen, M., Speck, J. S., Mishra, U.K., and DenBaars, S. P., Appl. Phys. Lett. 76, 3064 (2000)Google Scholar
9. Hierro, A., Ringel, S.A., Hansen, M., Speck, J. S., Mishra, U. K., and DenBaars, S. P., Appl. Phys. Lett. 77, 1499 (2000)Google Scholar
10. Hierro, A., Hansen, M., Boeckl, J. J., Zhao, L., Speck, J. S., Mishra, U. K., DenBaars, S. P. and Ringel, S. A., Phys. Stat. Sol. 228, 937 (2001)Google Scholar
11. Calleja, E., Sanchez, F. J., Basak, D., Sanchez-Garcia, M. A., Munoz, E., Izpura, I., Calle, F.. Tijero, J. M. G., and Sanchez-Rojas, J. L., Phys, Rev. B 55, 4689 (1997)Google Scholar
12. Van de Walle, C. G., Phys. Rev. B 56, 10020 (1997)Google Scholar
13. Wright, A. F., J. Appl. Phys. 90, 1164 (2001)Google Scholar
14. Wright, A. F., J. Appl. Phys. 92, 2575 (2002) 15 Google Scholar
Armstrong, A., Arehart, A. R., Ringel, S. A., Moran, B., DenBaars, S. P., Mishra, U. K., and Speck, J. S., to be publishedGoogle Scholar
16. Hierro, A., Arehart, A. R., Heying, B., Hansen, M., Mishra, U. K., DenBaars, S. P., Speck, J. S., and Ringel, S. A., Appl. Phys. Lett. 80, 805 (2002)Google Scholar
17. Fischer, S., Wetzel, C., Haller, E. E., and Meyer, B.K., Appl. Phys. Lett. 67, 1298 (1995)Google Scholar
18. Boguslawski, P. and Bernholc, J., Phys. Rev. B 56, 9496 (1997)Google Scholar
19. Boguslawski, P., Briggs, E. L. and Berholc, J., Appl. Phys. Lett. 69, 233 (1996)Google Scholar
20. Wang, H. and Chen, A. –B., Phys. Rev. B 63, 125212 (2001)Google Scholar