Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-01T17:58:27.022Z Has data issue: false hasContentIssue false

Hydrogen Effects on the Fracture of Thin Tantalum Nitride Films

Published online by Cambridge University Press:  21 February 2011

N. R. Moody
Affiliation:
Sandia National Laboratories, Livermore, CA 94551–0969
S. K. Venkataraman
Affiliation:
University of Minnesota, Minneapolis, MN 55455
B. Bastasz
Affiliation:
Sandia National Laboratories, Livermore, CA 94551–0969
J. E. Angelo
Affiliation:
Sandia National Laboratories, Livermore, CA 94551–0969
W. W. Gerberich
Affiliation:
University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

In this study we used nanoindentation and continuous microscratch testing to determine the effect of hydrogen on the work of adhesion and fracture toughness of thin tantalum nitride films. These films were sputter-deposited on sapphire substrates to a thickness of 600 nm followed by the heating of some films in deuterium and some in vacuum at 300°C. Deuterium was used in this study because it is much easier to detect and measure than hydrogen. Ion beam spectroscopy showed that exposure to deuterium produced a uniform internal deuterium concentration of 2000 appm. Nanoindentation showed that exposure to deuterium at 300°C and vacuum annealing at 300°C had little effect on elastic modulus and hardness values of these films at room temperature. In contrast, the microscratch tests at room temperature revealed that the work of adhesion decreased from 24.5 J/m2 after vacuum annealing to 9.1 J/m2 after deuterium charging and demonstrated that tantalum nitride films have a strong susceptibility to hydrogen embrittlement.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ohfuji, S. and Hashimoto, C., J. Vac. Sci. Technol. B4, 714 (1986).Google Scholar
2. Meyer, C. H. Jr. and Smith, J. N., J. Vac. Sci. Technol., 16, 248 (1979).Google Scholar
3. Adams, J. R. and Kramer, D. K., Surface Science, 56, 486 (1976).Google Scholar
4. Au, C. L., Anderson, W. A., Schmitz, D. A., Flassayer, J. C., and Collins, F. M., J. Mater. Res., 5, 1224 (1990).Google Scholar
5. Poulter, K. and Pryde, J. A., in Proceedings of the Fourth International Vacuum Congress (The Institute of Physics and the Physical Society, London, 1968), pp. 111114.Google Scholar
6. Spulak, R. G. Jr, J. of the Less-Common Metals, 160, 15 (1990).Google Scholar
7. Moody, N. R., Venkataraman, S. K., Nelson, J., Worobey, W., and Gerberich, W. W., in Covalent Ceramics II: Non-Oxides, edited by Barron, A. R., Fischman, G. S., Fury, M. A., and Hepp, A. F. (Mater. Res. Soc. Proc. 327, Pittsburgh, PA, 1994) pp. 337342.Google Scholar
8. Oliver, W. C. and Pharr, G. M., J. Mater. Res., 7, 1564 (1992).Google Scholar
9. Doerner, M. F. and Nix, W. D., J. Mater. Res., 1, 601 (1986).Google Scholar
10. Nix, W. D., Metall. Trans. A, 20A, 2217 (1989).Google Scholar
11. Wu, T. W., Hwang, C., Lo, J., and Alexopoulos, P. S., Thin Solid Films, 166, 299 (1988).Google Scholar
12. Wu, T. W., J. Mater. Res, 6, 407, (1991).Google Scholar
13. Venkataraman, S. K., Kohlstedt, D. L., and Gerberich, W. W., J. Mater. Res., 7, 1126 (1992).Google Scholar
14. Venkataraman, S. K., Kohlstedt, D. L., and Gerberich, W. W., Thin Solid Films, 223, 269 (1993).Google Scholar
15. Kolonits, V. P., Koltai, M., and Marton, D., Thin Solid Films, 57, 221 (1979).Google Scholar
16. Evans, A. G. and Ruhle, M., MRS Bulletin, XV (10), 46 (1990).Google Scholar
17. Trumble, K. P. and Ruhle, M., in Metal-Ceramic Interfaces, edited by Ruhle, M., Evans, A. G., Ashby, M. F., and Hirth, J. P. (Pergammon Press, Oxford, 1990) p. 144.Google Scholar
18 Mittal, K. L., Electrocomponent Science and Technology, 3, 21 (1976).Google Scholar
19. Rickersby, D. S., Surface and Coatings Technology, 36, 541 (1988).Google Scholar
20. Chopra, K. L., Thin Film Phenomena, (McGraw-Hill Book Company, New York, 1969).Google Scholar
21. Venkataraman, S. K., Nelson, J. C., Moody, N. R., Kohlstedt, D. L., and Gerberich, W. W., in Poly crystalline Thin Films: Structure, Texture, Properties and Applications, edited by Barmak, K., Parker, M. A., Flora, J. A., Sinclair, R., and Smith, D. A. (Mater. Res. Soc. Proc. 343, Pittsburgh, PA, 1994) pp. 597602.Google Scholar
22. Angelo, J. E., Moody, N. R., Venkataraman, S. K., and Gerberich, W. W., to be published in the Proceedings of the Symposium on the Structure and Properties of Interfaces in Ceramics, 1994 MRS Fall Meeting, Boston, MA.Google Scholar
23. Thornton, J. A. and Hoffman, D. W., J. Vac. Sci. Technol., 14, 164 (1977).Google Scholar
24. Thornton, J. A., Tabock, J. and Hoffman, D. W., Thin Solid Films, 64, 111 (1979).Google Scholar
25. Karch, J., Birringer, R., and Gleiter, H., Nature, 330, 556 (1987).Google Scholar
26. Gerberich, W. W., Marsh, P., and Hoehn, J., to be published in Proceedings of the Fifth International Conference on Hydrogen Effects on Material Behavior, edited by Thompson, A. W. and Moody, N. R. (TMS, Warrendale, PA, 1995).Google Scholar