Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-27T04:04:51.689Z Has data issue: false hasContentIssue false

Hybrid Silica Based Materials as New Solid Phase Extractants.

Published online by Cambridge University Press:  01 February 2011

Stéphane Bourg
Affiliation:
CEA Valrho, DCC/DRRV/SPHA, Atalante, BP 171 30207 Bagnols sur Cèze Cedex, France
Jean-Charles Broudic
Affiliation:
CEA Valrho, DCC/DRRV/SPHA, Atalante, BP 171 30207 Bagnols sur Cèze Cedex, France
Olivier Conocar
Affiliation:
CEA Valrho, DCC/DRRV/SPHA, Atalante, BP 171 30207 Bagnols sur Cèze Cedex, France
Joël J.E. Moreau
Affiliation:
Laboratoire de Chimie Organométallique, CNRS UMR 5076, ENSCM, 8 Rue de l'Ecole Normale, 34296, Montpellier Cedex 5, France
Daniel Meyer
Affiliation:
CEA Valrho, DCC/DRRV/SPHA, Atalante, BP 171 30207 Bagnols sur Cèze Cedex, France
Michel Wong Chi Man
Affiliation:
Laboratoire de Chimie Organométallique, CNRS UMR 5076, ENSCM, 8 Rue de l'Ecole Normale, 34296, Montpellier Cedex 5, France
Get access

Abstract

Organic-inorganic hybrids exhibiting specific properties are easily prepared by incorporation of organic fragments in an inorganic network. Increasing attention is being paid to hybrid silsesquioxane gels, which are prepared by sol-gel hydrolysis condensation of organic molecules containing two or more trialkoxysilyl substituents. These hybrids consist of a mixed three-dimensional network, where the organic fragment, cross-linking siloxane chains, is part of the framework. Owing to the presence of a strong Si-C bond between the organic and the inorganic fragments, highly stable hybrid network are produced in this way. A variety of materials can be produced according to the intrinsic properties of the organic. We report here the preparation of hybrid materials with complexing properties upon hydrolysis-condensation of ligands functionalized by Si (OR)3 groups. New hybrid silica based materials containing malonamide ligands have been prepared by sol-gel hydrolysis condensation of functionalized precursors and have been used as solid phase extractants for the complexation of actinides. This approach is quite different from the classical immobilization procedure of complexing agents. The sol-gel approach allows one to adjust the ligand loading and to achieve some control and some tuning of the ligand environment since the oxide matrix is built around the complexing moieties. These hybrids proved to be highly efficient extracting solids.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Brinker, C.J., Scherer, G.W., (Academic Press, San Diego, CA 1990).Google Scholar
[2] Schmidt, , Mater Res Soc Symp Proc, 180, 961, (1990).Google Scholar
[3] Sanchez, C., Ribot, F., New J. Chem.,, 18, 1007, (1994).Google Scholar
[4] Shea, K.J., Loy, E.A., Webster, O., J. Am. Chem. Soc.,, 114, 6700, (1992).Google Scholar
[5] Loy, D.A., Shea, K.J., Chem. Rev.,, 95, 1431, (1995).Google Scholar
[6] Corriu, R.J.P., Moreau, J.J.E., Thépot, P., Wong Chi Man, M., Chem. Mater.,, 4, 1217, (1992).Google Scholar
[7] Corriu, R., Leclercq, D., Ang. Chem., Int. Ed. Engl.,, 35, 1420, (1996).Google Scholar
[8] Baney, R.H., Itoh, M., Sakakibara, A., Suzuki, T., Chem. Rev.,, 95, 1409, (1995).Google Scholar
[9] Roger, C., Hampden-Smith, M.J., Brinker, C., J. Mater. Symp. Proc.,, 271, 51, (1992).Google Scholar
[10] Lu, Y., Cao, G.Z., Kale, R.P., Delattre, L.L., Brinker, C.J., Lopez, G.P., J. Mater. Symp. Proc.,, 435, 271, (1996).Google Scholar
[11] Loy, D.A., Buss, R.J., Assink, R.A., Shea, K.J., Oviatt, H., Polym. Prep.,, 34, 244, (1993).Google Scholar
[12] Corriu, R.J.P., Moreau, J.J.E., Thépot, P., Wong Chi Man, M., Chem. Mater.,, 8, 100, (1996).Google Scholar
[13] Chevalier, P., Corriu, R.J.P., Delors, P., Moreau, J.J.E., Wong Chi Man, M., New J. Chem.,, 22, 423, (1998).Google Scholar
[14] Barton, T.J., Ball, L.M., Klemperer, W.G., Loy, D.A., Mc Enaney, B., Misono, M., Monson, P.A., Pez, G., Scherer, G.W., Vartuli, J.C., Yaghi, O.M., Chem. Mater.,, 11, 2633 and references therein, (1999).Google Scholar
[15] Schubert, U., Husing, N., Lorenz, A., Chem. Mater.,, 7, 2010, (1995).Google Scholar
[16] Schubert, U., New J. Chem.,, 18, 1049 and references therein, (1994).Google Scholar
[17] Nakatani, K., Takahashi, R., Soga, H., J. Non-Cryst. Solids,, 147–148, 291, (1992).Google Scholar
[18] Madic, C., Blanc, P., Condamines, N., Baron, P., Berthon, L., Nicol, C., Pozo, C., Lecomte, M., Philippe, M., Masson, M., Hequet, C., Hudson, M.J., RECOD '94, (1994).Google Scholar
[19] Charbonnel, M.C., Berthon, L., Pozo, C.,, CEA/DCC/DRDD/SEMP/SEC 1996.Google Scholar
[20] Broudic, J.C., Conocar, O., Moreau, J.J.E., Meyer, D., Wong-Chi-Man, M., J. Mater. Chem.,, 9, 2283, (1999).Google Scholar
[21] Voronkov, M.G., Lavrent'yev, V.I., Top. Curr. Chem., 102, 199, (1982).Google Scholar
[22] Williams, E.A., Patai, S., Z. Rappoport (Wiley, New York 1989).Google Scholar
[23] Brunauer, S., Emmett, P.H., Teller, J.E., J. Am. Chem. Soc.,, 60, 309, (1938).Google Scholar
[24] Barrett, E.P., Joyner, L.G., Hallenda, P.P., J. Am. Chem. Soc.,, 73, 309, (1951).Google Scholar
[25] Gregg, S.J., Sing, K.S.W., (Academic Press, London 1982).Google Scholar
[26] Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T., Pure Appl. Chem.,, 57, 603, (1985).Google Scholar