Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-15T14:43:44.409Z Has data issue: false hasContentIssue false

Hybrid Electronic-density-functional/molecular-dynamics Simulation on Parallel Computers: Oxidation of Si Surface

Published online by Cambridge University Press:  21 March 2011

Shuji Ogata
Affiliation:
Department of Applied Sciences, Yamaguchi University, Ube 755-8611, Japan
Fuyuki Shimojo
Affiliation:
Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
Aiichiro Nakano
Affiliation:
Concurrent Computing Laboratory for Materials Simulations, Louisiana State University, Baton Rouge, LA 70803-4001, U.S.A
Priya Vashishta
Affiliation:
Concurrent Computing Laboratory for Materials Simulations, Louisiana State University, Baton Rouge, LA 70803-4001, U.S.A
Rajiv K. Kalia
Affiliation:
Concurrent Computing Laboratory for Materials Simulations, Louisiana State University, Baton Rouge, LA 70803-4001, U.S.A
Get access

Abstract

A hybrid quantum mechanical/molecular dynamics simulation scheme is developed by embedding a quantum mechanical system described by the real-space density-functional theory in a classical system of atoms interacting via an empirical interatomic potential. A novel scaled position method for handshake atoms coupling the quantum and the classical systems is introduced. Hybrid simulation run for oxidation of Si (100) surface is performed to demonstrate seamless coupling of the quantum and the classical systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rerefences

1. Warshel, A. and Levitt, M., J. Mol. Biol. 103, 227 (1976).Google Scholar
2. Svensson, M., Hymbel, S., Froese, R. D.F., Matsubara, T., Sieber, S., and Morokuma, K., J. Comp. Chem. 100, 19357 (1996).Google Scholar
3. Eichler, U., Kölmel, C. M., and Sauer, J., J. Comp. Chem. 18, 463 (1996).Google Scholar
4. Dapprich, S., Komäromi, I., Byun, K. S., Morokuma, K., and Frisch, M.J., J. Mol. Struc. (Theochem) 461–462, 1 (1999).Google Scholar
5. Broughton, J.Q., Abraham, F.F., Bernstein, N., and Kaxiras, E., Phys. Rev. B 60, 2391 (1999).Google Scholar
6. Hoenberg, P. and Kohn, W., Phys. Rev. 136, B864 (1964); W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).10.1103/PhysRev.136.B864Google Scholar
7. See, e.g., Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., and Joannopoulos, J.D., Rev. Mod. Phys. 64, 1045 (1992).Google Scholar
8. Troullier, N. and Martins, J.L., Phys. Rev. B 43, 1993 (1991).Google Scholar
9. Chelikowsky, J.R., Troullier, N., and Saad, Y., Phys. Rev. Lett. 72, 1240 (1994).Google Scholar
10. Briggs, E.L., Sullivan, D.J., and Bernholc, J., Phys. Rev. B 54, 14362 (1996).Google Scholar
11. Brandt, A., Math. Comp. 31, 333 (1977).Google Scholar
12. Ogata, S., Shimojo, F., Nakano, A., Vashishta, P., and Kalia, R.K., Comp. Phys. Comm., in pressGoogle Scholar
13. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
14. Shimojo, F., Campbell, T.J., Kalia, R.K., Nakano, A., Ogata, S., Vashishta, P., and Tsuruta, K., Future Generation Comp. Sys., accepted for publication.Google Scholar
15. Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11168 (1996).Google Scholar
16. Gropp, W., Lusk, E., and Skjellum, A., Using MPI (MIT Press, Cambridge, 1994).Google Scholar
17. Nakano, A., Kalia, R. K., and Vashishta, P., Comp. Phys. Comm. 83, 197 (1994; A. Nakano, Concurrency: Practice and Experience 11, 343 (1999).Google Scholar
18. Allen, M.P. and Tildesley, D., Computer Simulation of Liquids (Clarendon, Oxford, 1987).Google Scholar
19. Stillinger, F.H. and Weber, T.A., Phys. Rev. B 31, 5262 (1985).Google Scholar
20. Khor, K.E. and Sarma, S. Das, Phys. Rev. B 36, 7733 (1987).10.1103/PhysRevB.36.7733Google Scholar