Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T14:06:35.303Z Has data issue: false hasContentIssue false

HRTEM Study of the Interfacial Reactions of High-Temperature Sputtered Ti Thin Films on Preamorphized (001)Si

Published online by Cambridge University Press:  10 February 2011

S. M Chang
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
H. Y Yang
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
H. Y Huang
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
L. J. Chen
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
Get access

Abstract

Interfacial reactions of high-temperature sputtered Ti thin films on preamorphized (001)Si have been investigated by high-resolution transmission electron microscopy in conjunction with auto-correlation function analysis. Simultaneous presence of multiphases was found to occur in the amorphous TiSix layer at the Ti/Si interface. The enhanced transformation of C54-TiSi2 in high-temperature deposited samples is attributed to the more extensive presence of silicide crystallites, which serve as nucleation sites, in the a-TiSix layer than that in samples deposited at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Colgan, E. G., Gambino, J. P. and Hong, Q. Z., Materials Science and Engineering, R 16, 43 (1996).10.1016/0927-796X(95)00186-7Google Scholar
2. Lasky, J. B., Nakos, J. S., Cain, O. J. and Geiss, P. J., IEEE Trans. Electron Devices ED-38, 262(1991).10.1109/16.69904Google Scholar
3. Fujii, K., Tung, R. T., Eaglesham, D. J., Kikuta, K. and Kikkawa, T., Mater. Res. Soc. Symp. Proc. 402, 83 (1996).10.1557/PROC-402-83Google Scholar
4. Liang, J. M., and Chen, L. J., Appl. Phys. Lett. 64, 1224 (1994).10.1063/1.110846Google Scholar
5. Fan, G. Y and Cowley, J. M., Ultramicroscopy 17, 345 (1985).Google Scholar
6. Frank, J., Computer Processing of Electron Microscopy Images (Springer, Berlin, 1980), p 187.Google Scholar
7. Wang, M. H. and Chen, L. J., Appl. Phys. Lett. 59, 2460 (1991).10.1063/1.105995Google Scholar
8. Ma, Z., Allen, L. H. and Allman, D. D. J., J. Appi. Phys. 77, 4384 (1995).10.1063/1.359464Google Scholar
9. van Hontum, H. J. W., Raaijmakers, I. J. M. M. and Menting, T. J. M., J. Appl. Phys. 61, 3116(1987).10.1063/1.337815Google Scholar
10. Chang, S. M., Huang, H. Y, Yang, H. Y and Chen, L. J., Appl. Phys. Lett. 74, 224 (1999).10.1063/1.123300Google Scholar