Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-26T19:44:39.434Z Has data issue: false hasContentIssue false

Hrem Investigation of the Structure of the Σ5(210)/[001] Symmetric Tilt Grain Boundaries in Nb.

Published online by Cambridge University Press:  15 February 2011

G. H. Campbell
Affiliation:
Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA 94550 Max Planck Institut für Metallforschung, Institut für Werkstoffwissenschaft, Stuttgart, Germany
S. M. Foiles
Affiliation:
Sandia National Laboratories, Livermore, CA 94551
Wayne E. King
Affiliation:
Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA 94550
M. Rühle
Affiliation:
Max Planck Institut für Metallforschung, Institut für Werkstoffwissenschaft, Stuttgart, Germany
W. Wien
Affiliation:
Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA 94550
Get access

Abstract

We have simulated the atomic structures of the Σ 5 (210)/[001 ] symmetric tilt grain boundary using interatomic potentials for Nb developed employing the embedded atom method (EAM) and the model generalized pseudopotential theory (MGPT). These potentials do not predict the same lowest energy structure for the Σ 5 (210)/[001]. Using the ultra high vacuum diffusion bonding process, we have fabricated Σ 5 (210)/[001] bicrystals. The samples have been observed using high resolution electron microscopy and the observed images have been compared with those simulated based on the structures predicted theoretically. The experimental result for the Σ 5 (210)/[001] is in close agreement with the structure predicted using the EAM.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Foiles, S. M., Baskes, M. I. and Daw, M. S., Phys. Rev., B33, 7983, (1986).Google Scholar
2. Finnis, M. W. and.Sinclair, J. E., Philos. Mag., A 50, 45, (1984);erratum Philos. Mag. A 53, 161 (1986).Google Scholar
3. Moriarty, J. A., Phys. Rev., B38, 3199, (1988).Google Scholar
4. Moriarty, J. A., Phys. Rev. B, 42, 1609, (1990).CrossRefGoogle Scholar
5. Johnson, R. A. and Oh, D. J., J. Mater. Res., 4, 1195, (1989).Google Scholar
6. Moriarty, J. A. in Many-Atom Interactions in Solids, edited by Nieminen, R., Puska, M. J. and M. Manninen (Berlin 1990); Private communication.Google Scholar
7. Foiles, S. M., Daw, M. S. and Phillips, R. B. in Defects in Materials, edited by Bristowe, P. D., Epperson, J. E., Griffith, J. E. and Z. Liliental-Weber (Mat. Res. Soc. Symp. Proc. 209, Pittsburgh, PA 1991).Google Scholar
8. Fischmeister, H. F., Mader, W., Gibbesch, B. and Elssner, G. in Interfacial Structure, Properties, and Design, edited by Yoo, M. H., Clark, W. A. T. and Briant, C. L. (Mat. Res. Soc. Symp. Proc. 122, Pittsburgh, PA 1988) pp. 529540.Google Scholar
9. King, W. E., Campbell, G. H., Coombs, A., Mills, M. J. and Ruhle, M. in Defects in Materials, edited by Bristowe, P. D., Epperson, J. E., Griffith, J. E. and Liliental-Weber, Z. (Mat. Res. Soc. Symp. Proc. 209, Pittsburgh, PA 1991).Google Scholar
10. Wasserbich, W. and Rapp, M., Practical Metallography,.6, 345349, (1979).CrossRefGoogle Scholar
11. Stadelmann, P., Ultramicroscopy, 21, 131146, (1987).Google Scholar
12. O'Keefe, M. A., Dahmen, U. and Hetherington, C. J. D. in Atomic Scale Structure of Interfaces, edited by Bringans, R. D., Feenstra, R. M. and Gibson, J. M. (Mat. Res. Soc. Symp. Proc. 159, Pittsburgh, PA 1990) pp. 453458.Google Scholar
13. Phillip, F., Saile, B. and Urban, K. in Point Defects and Defect Interactions in Metals, edited by Takamura, J., Doyama, M. and M. Kiritani (Tokyo 1982) pp. 261.Google Scholar
14. Young, F. W., J. of Nucl. Mater., 69&70, 310, (1978).Google Scholar