Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T14:20:01.165Z Has data issue: false hasContentIssue false

How Stretchable Can We Make Thin Metal Films?

Published online by Cambridge University Press:  01 February 2011

Candice Tsay
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ, USA
Stephanie P. Lacour
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ, USA
Sigurd Wagner
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, NJ, USA
Teng Li
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
Zhigang Suo
Affiliation:
Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
Get access

Abstract

Thin metal films deposited on elastomeric substrates can remain electrically conducting at tensile strains up to ~∼00%. We recently used finite-element simulation to explore the rupture process of a metal film on an elastomer. The simulation predicted the highest stretchability on stiff elastomeric substrates [1]. We now report experiments designed to verify this prediction. A ∼15-μm thick silicone elastomer layer with Young's modulus E ∼ 160 MPa is deposited on a 1mm thick membrane of polydimethylsiloxane (PDMS), a silicone elastomer with E ∼3 MPa. Metal stripes consisting of 25-nm thick gold (Au) film sandwiched between two 5-nm thick chromium (Cr) adhesion layers are fabricated either on top of the stiff layer spun onto the soft membrane substrate, or are encapsulated at the interface between the two elastomers. Encapsulated gold films remain electrically conducting beyond 40% strain. But conductors deposited on top of stiff elastomer lose conduction at strains of 3-8%. These results suggest that, in addition to the stiffness of the elastomeric substrate, the initial microstructure of the metal film plays a role in determining its stretchability.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Li, T., Huang, Z., Suo, Z., Lacour, S. P., Wagner, S., Appl. Phys. Lett. 85, 3435 (2004).Google Scholar
2. Pashley, D.W., Proc. Roy. Soc. Lond. A 255, 218 (1960).Google Scholar
3. Lacour, S.P., Wagner, S., Huang, Z., Suo, Z., Appl. Phys. Lett. 82, 2404 (2003).Google Scholar
4. Lacour, S.P., Jones, J., Suo, Z., Wagner, S., IEEE Elec. Dev. Lett. 25, 179 (2004).Google Scholar
5. Lacour, S.P., Tsay, C., Wagner, S., IEEE Elec. Dev. Lett. 25, 792 (2004).Google Scholar
6. Li, T., Huang, Z. Y., Xi, Z. C., Lacour, S. P., Wagner, S., and Suo, Z., Mechanics of Materials 37, 261 (2005).Google Scholar
7. Chambers, C., Lacour, S.P., Wagner, S., Suo, Z., Huang, Z., Mat. Res. Soc. Symp. Proc. 769 Apr. 2003, pp. H10.3.1-6.Google Scholar
8. Zhang, W., Labukas, J.P., Tatic, S.-Lucic, Larson, L., Bannuru, T., Ferguson, G.S., Technical Digest Eurosensors XVIII (Rome, 2004), 552.Google Scholar
9. Meynen, H., Vanden, M. Bulcke, Gonzalez, M., Harkness, B., Gardner, G., Sudbury-Holtschlag, J., Vandevelde, B., Winters, C., Beyne, E., Microelec. Eng. 76, 212 (2004).Google Scholar
10. Xiang, Y., Li, T., Suo, Z., Vlassak, J.J., to be pubished.Google Scholar
11. Chiu, S. L., Leu, J. and Ho, P. S., J. Appl. Phys., 76, 5136 (1994).Google Scholar
12. Alaca, B. E., Saif, M. T. A. and Sehitoglu, H., Acta Mater., 50, 1197 (2002).Google Scholar