Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T14:10:56.368Z Has data issue: false hasContentIssue false

Homogeneity in the Polyether Alkoxide Sol‐Gel Synthesis of YBa2Cu3O7-δ

Published online by Cambridge University Press:  21 February 2011

Carol S. Houk
Affiliation:
Department of Chemistry, University of Oregon, Eugene, Oregon 97403
Gary A. Burgoine
Affiliation:
Department of Chemistry, University of Oregon, Eugene, Oregon 97403
Catherine J. Page
Affiliation:
Department of Chemistry, University of Oregon, Eugene, Oregon 97403
Get access

Abstract

We have investigated the homogeneity of sol‐gel derived YBa2Cu307‐s from the solution phase to the final product using transmission electron microscopy (TEM), x‐ray diffraction (XRD), and Energy Dispersive X‐ray (EDX) lateral mapping techniques. The starting solutions contain stoichiometric amounts of the metal 2‐(2‐methoxyethoxy)ethoxide components in 2‐(2‐methoxyethoxy)ethanol and appear to be homogeneous by TEM with a uniform distribution of particles having an average size of less than 40 â. Through elemental mapping we see elemental segregation in the high temperature (950 °C) products, which are orthorhombic by XRD. In elemental maps of gel samples fired to 700 °C, which are tetragonal by XRD, we also see elemental inhomogeneity within particles and phase zoning in maps of products from finely ground gels. A comparison of elemental maps and x‐ray diffraction patterns of the products from gel processing and conventional solid state processing is made.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Schmidt, H., J. Non‐Cryst. Solids 100, 51 (1988).Google Scholar
2 Mehrotra, R., J. Non‐Cryst. Solids 100, 1 (1988).Google Scholar
3 Reuter, H., Adv. Mater. 3, 258(1991).Google Scholar
4 Lee, G. and Crayston, J., Adv. Mater. 5,434 (1993).Google Scholar
5 Rupich, M. W., Liu, Y. P., Ibechem, J., and Hachey, J. P., J. Mater. Res. 8, 1487 (1993).Google Scholar
6 Xheng, H. and Mackenzie, J. D., Mater. Lett. 7, 182, (1988).Google Scholar
7 Katayama, S. and Sekine, M., J. Mater. Res. 5, 683 (1990).Google Scholar
8 Monde, T., Kozuka, H. and Sakka, S., Chem. Lett. 287 (1988).Google Scholar
9 Catania, P., Hovnanian, M., Cot, L., Thi, M. Pham, Kormann, R. and Ganne, J. P., Mat. Res. Bull. 25,631 (1990).Google Scholar
10 Sauer, N. N., Garcia, E. G., Salazar, K. V., Ryan, R. R. and Martin, J. A., J. Am. Chem. Soc. 112, 1524(1990).Google Scholar
11 Horowitx, H. S., McLain, S. J., Sleight, A. W., Druliner, J. D., Gai, P. L., VanKavelaar, M. J., Wagner, J. L., Biggs, B. D. and Poon, S. J., Science 243, 66 (1989).Google Scholar
12 Kordas, G., Moore, G. A., Jorgensen, J. D., Rotella, F., Hitterman, R. L., Volin, K. J. and Faber, J., J. Mater. Chem. 1, 175 (1991).Google Scholar
13 Kordas, G., J. Non‐Crys. Solids 121,436 (1990).Google Scholar
14 Moore, G., Kramer, S. and Kordas, G., Mater. Lett. 7,415 (1989).Google Scholar
15 Hirano, S., Hayashi, T., Miura, M. and Tomonaga, H., Bull Chem. Soc. Jpn. 62, 888 (1989).Google Scholar
16 Goel, S. C., Kramer, K. S., Gibbons, P. C. and Buhro, W. E., Inorg. Chem. 28, 3619 (1989).Google Scholar
17 Page, C. J., Houk, C. S., and Burgoine, G. A., Mat. Res. Soc. Symp. Proc. 271,155 (1992).Google Scholar
18 Love, C. P., Torardi, C. C., and Page, C. J., Inorg. Chem. 31, 1784 (1992).Google Scholar
19 Cava, R., Batlogg, B., Dover, R. van, Murphy, D., Sunshine, S., Siegrist, T., Remeika, J., Rietman, E., Zahurak, S., and Estinosa, G., Phys. Rev. Let. 58, 1676 (1987).Google Scholar
20 Wang, H., Li, D., Thomson, W., J. Am. Ceram. Soc. 71, C‐463 (1988).Google Scholar
21 Karen, P., Braaten, O., and Kjekshus, A., Acta Chem. Scand. 46, 805 (1992).Google Scholar
22 Vlaeminck, H., Goossens, H. H., Mouton, R., Hoste, S., and Kelen, G. Van der, J. Mater. Chem. 1,863(1991).Google Scholar
23 Karen, P., and Kjekshus, A., J. Solid State Chem. 94, 298 (1991).Google Scholar
24 Boullay, Ph., Domengés, B., Hervieu, M., and Raveau, B., Chem. Mater. 5, 1683 (1993).Google Scholar
25 Gotor, F., Odier, P., Gervais, M., Choisnet, J., and Monod, Ph., Physica C 218,429 (1993).Google Scholar
26 Caigraert, V., Hervieu, M., Wang, J., Desgardin, G., Raveau, B., Boterel, F., and Haussonne, J., Physica C 170, 139 (1990).Google Scholar