Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-16T17:06:35.940Z Has data issue: false hasContentIssue false

High-Yield Synthesis of Luminescent Silicon Quantum Dots in a Continuous Flow Nonthermal Plasma Reactor

Published online by Cambridge University Press:  01 February 2011

L. Mangolini
Affiliation:
Department of Mechanical Engineering High Temperature and Plasma Laboratory University of Minnesota, Minneapolis, MN 55455
E. Thimsen
Affiliation:
Department of Mechanical Engineering High Temperature and Plasma Laboratory University of Minnesota, Minneapolis, MN 55455
U. Kortshagen
Affiliation:
Department of Mechanical Engineering High Temperature and Plasma Laboratory University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

Light-emission from silicon based on quantum confinement in nanoscale structures has sparked intense research into this field ever since its discovery about 15 years ago. The lack of a simple high-yield synthesis approach for luminescent silicon nanocrystals has so far hampered their widespread application in such diverse areas as opto-electronics, solid-state lighting for general illumination, and fluorescent agents for biological applications. In this paper we discuss a nonthermal plasma process for the synthesis of luminescent silicon nanocrystals. The particle size is mainly controlled by the residence time in the plasma region. The system is capable of producing several tens of milligrams of luminescent powder per hour.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Furukawa, S. and Miyasato, T., Three-dimensional Quantum Well Effects in Ultrafine Silicon Particles, in Jpn. J. Appl. Phys. 1988. p. L2207.10.1143/JJAP.27.L2207Google Scholar
2 Canham, L.T., Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. 1990. Appl. Phys. Lett., 57: p. 1046.10.1063/1.103561Google Scholar
3 Cullis, A.G. and Canham, L.T., Visible light emission due to quantum size effects in highly porous crystalline silicon. 1991. Nature, 335: p. 335338.10.1038/353335a0Google Scholar
4 Littau, K.A., Szajowski, P.J., Muller, A.J., Kortan, A.R., and Brus, L.E., A Luminescent Silicon Nanocrystal Colloid via a High-Temperature Aerosol Reaction. 1993. J. Phys. Chem., 97: p. 12241230.10.1021/j100108a019Google Scholar
5 Wilson, W.L., Szajowski, P.F., and Brus, L.E., Quantum Confinement in Size-Selected, Surface-Oxidized Silicon Nanocrystals. 1993. Science, 262(5137): p. 12421244.10.1126/science.262.5137.1242Google Scholar
6 Lu, Z.H., Lockwood, D.J., and Baribeau, J.-M., Quantum confinement and light emission in SiO2/Si superlattices. 1995. Nature, 378: p. 258260.10.1038/378258a0Google Scholar
7 Hirschman, K.D., Tsybeskov, L., Duttagupta, S.P., and Fauchet, P.M., Silicon-based visible light-emitting devices integrated into microelectronic circuits. 1996. Nature, 384(6607): p. 338341.10.1038/384338a0Google Scholar
8 Pavesi, L., Negro, L. Dal, Mazzoleni, C., Franzó, G., and Priolo, F., Optical gain in silicon nanocrystals. 2000. Nature, 408: p. 440444.10.1038/35044012Google Scholar
9 Brus, L.E., Szajowski, P.J., Wilson, W.L., Harris, T.D., Schuppler, S., and Citrin, P.H., Electronic Spectroscopy and Photophysics of Si Nanocrystals: Relationship to Bulk c-Si and Porous Si. 1995. J. Am. Chem. Soc., 117: p. 29152922.10.1021/ja00115a025Google Scholar
10 Puzder, A., Williamson, A.J., Grossman, J.C., and Galli, G., Surface Chemistry of Silicon Nanoclusters. 2002. Phys. Rev. Lett., 88(9): p. 097401–4.10.1103/PhysRevLett.88.097401Google Scholar
11 Wilcoxon, J.P. and Samara, G.A., Tailorable, visible light emission from silicon nanocrystals. 1999. Appl. Phys. Lett., 74(21): p. 31643166.10.1063/1.124096Google Scholar
12 Holmes, J.D., Ziegler, K.J., Doty, C., Pell, L.E., Johnston, K.P., and Korgel, B.A., Highly luminescent silicon nanocrystals with discrete optical transitions. 2001. J. Am. Chem. Soc., 123: p. 37433748.10.1021/ja002956fGoogle Scholar
13 Pettigrew, K.A., Liu, Q., Power, P.P., and Kauzlarich, S.M., Solution Synthesis of Alkyl-and Alkyl/Alkoxy-Capped Silicon Nanoparticles via Oxidation of Mg2Si. 2003. Chemistry of Materials, 15(21): p. 40054011.10.1021/cm034403kGoogle Scholar
14 Baldwin, R.K., Pettigrew, K.A., Garno, J.C., Power, P.P., Liu, G.-y., and Kauzlarich, S.M., Room Temperature Solution Synthesis of Alkyl-Capped Tetrahedral Shaped Silicon Nanocrystals. 2002. Journal of the American Chemical Society, 124(7): p. 11501151.10.1021/ja017170bGoogle Scholar
15 Ostraat, M.L., Blauwe, J.W. De, Green, M.L., Bell, L.D., Brongersma, M.L., Casperson, J., Flagan, R.C., and Atwater, H.A., Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices. 2001. Applied Physics Letters, 79(3): p. 433435.10.1063/1.1385190Google Scholar
16 Batson, P.E. and Heath, J.R., Electron energy loss spectroscopy of single silicon nanocrystals: the conduction band. 1993. Physical Review Letters, 71(6): p. 911–14.10.1103/PhysRevLett.71.911Google Scholar
17 Ehbrecht, M. and Huisken, F., Gas-phase characterization of silicon nanoclusters produced by laser pyrolysis of silane. 1999. Physical Review B: Condensed Matter and Materials Physics, 59(4): p. 29752985.10.1103/PhysRevB.59.2975Google Scholar
18 Li, X., He, Y., Talukdar, S.S., and Swihart, M.T., Process for Preparing Macroscopic Quantities of Brightly Photoluminescent Silicon Nanoparticles with Emission Spanning the Visible Spectrum. 2003. Langmuir, 19(20): p. 84908496.10.1021/la034487bGoogle Scholar
19 Kortshagen, U. and Bhandarkar, U., Modeling of particulate coagulation in low pressure plasmas. 1999. Phys. Rev. E, 60(1): p. 887.Google Scholar
20 Bapat, A., Anderson, C., Perrey, C.R., Carter, C.B., Campbell, S.A., and Kortshagen, U., Plasma synthesis of single-crystal silicon nanoparticles for novel electronic device applications. 2004. Plasma Phys. and Controlled Fusion, 46(12): p. B97–B109.10.1088/0741-3335/46/12B/009Google Scholar
21 Mangolini, L., Thimsen, E., and Kortshagen, U., High-Yield Plasma Synthesis of Luminescent Silicon Nanocrystals. 2005. Nano Letters, DOI: 10.1021/nl050066y.10.1021/nl050066yGoogle Scholar