Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T07:48:47.593Z Has data issue: false hasContentIssue false

High-temperature Process Endurance of Oxide/Electrode Stacking Structure for Resistance Random Access Memory

Published online by Cambridge University Press:  01 February 2011

Hisashi Shima
Affiliation:
shima-hisashi@aist.go.jp, National Institute of Advanced Industrial Science and Technology (AIST), Nanodevice Innovation Research Center (NIRC), Tsukuba, Ibaraki, Japan
Takashi Nakano
Affiliation:
nakano.takashi@aist.go.jp, SHARP Corporation, Advanced Technology Research Laboratories, Fukuyama, Hiroshima, Japan
Hiro Akinaga
Affiliation:
akinaga.hiro@aist.go.jp, National Institute of Advanced Industrial Science, Tsukuba, Japan
Get access

Abstract

The systematic investigation on the thermal stability of the CoO layer was carried out for various electrode materials. When Pt with higher oxygen potential (Gibbs free energy change of the oxidation reaction) compared to Co is used as electrodes, the resistance of the Pt/CoO/Pt devise was severely decreased by the post deposition annealing (PDA) process and the resistance switching into the high resistance state was observed in the first voltage sweep. This indicants that the reducing Ar ambient induces the quite local reduction of CoO. The reduction of the CoO layer is also expected even with the Co electrode, which is reasonably attributed to the oxygen concentration gradient at the Co/CoO interface in the Co/CoO/Pt device. With the Ti electrode having a much lower oxygen potential than Co, the reduction of CoO by Ti is also indicated electrically in the Pt/CoO/Ti device. On the other hands, W electrodes which is thought to have the solid-solution oxygen can stabilize the CoO layer during PDA although W is more affinitive with oxygen compared with Co. It can be pointed out the oxygen delivery at the electrode/oxide layer interface is a critical factor in designing the thermally stable stacking structure for resistance random access memory.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Seo, S., Lee, M. J., Seo, D. H., Jeoung, E. J., D.-S. Suh, Joung, Y. S., Yoo, I. K., Hwang, I. R., Kim, S. H., Byun, I. S., Kim, J.-S.. Choi, J. S., and Park, B. H., Appl. Phys. Lett. 85, 5655 (2004).Google Scholar
2 Kinoshita, K., Tamura, T., Aoki, M., Sugiyama, Y., and Tanaka, H., Appl. Phys. Lett. 89, 103509 (2006).Google Scholar
3 Choi, B. J., Jeong, D. S., Kim, S. K., Rohde, C., Choi, S., Oh, J. H., Kim, H. J., Hwang, C. S., Szot, K., Waser, R., Reichenberg, B., and Tiedke, S., J. Appl. Phys. 98, 033715 (2005).Google Scholar
4 Shima, H., Takano, F., Muramatsu, H., Akinaga, H., Tamai, Y., Inoue, I. H., and Takagi, H., Appl. Phys. Lett. 93, 113504 (2008).10.1063/1.2982426Google Scholar
5 Do, Y. H., Kwak, J. S., Hong, J. P., Jung, K., and Im, H. Y., J. Appl. Phys. 104, 114512 (2008).Google Scholar
6 Lin, C.-Y., Wu, C.-Y., Wu, C.-Y., Tseng, T.-Y., and Hu, C., J. Appl. Phys. 102, 094101 (2007).Google Scholar
7 Goux, L., Lisoni, J. G., Wang, X. P., Jurczak, M., and Wouters, D. J., IEEE Trans. Electron Devices 56, 2363 (2009).10.1109/TED.2009.2028378Google Scholar
8 Kinoshita, K., Tsunoda, T., Sato, Y., Noshiro, H., Yagaki, S., Aoki, M., and Sugiyama, Y., Appl. Phys. Lett. 93, 033506 (2008).10.1063/1.2959065Google Scholar
9 Lee, H. Y., Chen, Y. S., Chen, P. S., Wu, T. Y., F. Chen, Wang, C. C., Tzeng, P. J., Tsai, M.-J., and Lien, C., IEEE Electron Device Lett. 31, 44 (2010).Google Scholar
10 Lee, H. Y., Chen, P.-S., Wu, T.-Y., Chen, Y. S., Chen, F., Wang, C.-C., Tzeng, P.-J., Lin, C. H., Tsai, M.-J., and Lien, C., IEEE Electron Device Lett. 30, 703 (2009).Google Scholar
11 Chen, A., Haddad, S., Wu, Y.-C., Fang, T.-N., Lan, Z., Avanzine, S., Pangrle, S., Buynoski, M., Rathor, M., Chai, W., Tripsas, N., Bill, C., VanBuskirk, M., and Taguchi, M., IEDM Tech. Dig., 2005, pp. 765768.Google Scholar
12 Tsunoda, K., Kinoshita, K., Noshiro, H., Yamazaki, Y., Iizuka, T., Ito, Y., Takahashi, A., Okano, A., Sato, Y., Fukano, T., Aoki, M., and Sugiyama, Y., IEDM Tech. Dig., 2007, pp. 637640 Google Scholar
13 Lee, H. Y., Chen, P. S., Wu, T. Y., Chen, Y. S., Wang, C. C., Tzeng, P. J., Lin, C. H., Chen, F., Lien, C. H., and Tsai, M.-J., IEDM Tech. Dig., 2008, pp. 297300.Google Scholar
14 Nakajima, K., Fujiyoshi, A., Ming, Z., Suzuki, M., and Kimura, K., J. Appl. Phys. 102, 064507 (2007).Google Scholar
15 Kim, H., Mclntyre, P. C., Chui, C. O., and Saraswat, K. C., and Stemmer, S., J. Appl. Phys. 96, 3467 (2004).Google Scholar
16 Kobyakov, V. P., and Ponomarev, V. I., Crystallography Reports 47, 114 (2002).Google Scholar
17 Preisler, E. J., Guha, S., Copel, M., Bojarczuk, N. A., Reuter, M. C., and Gusev, E., Appl. Phys. Lett. 85, 6230 (2004).10.1063/1.1834995Google Scholar