Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-19T15:50:15.206Z Has data issue: false hasContentIssue false

High-Temperature Electron Transport Properties in AlGaN/GaN Heterostructure Field Effect Transistors

Published online by Cambridge University Press:  17 March 2011

Narihiko Maeda
Affiliation:
NTT Basic Research Laboratories, Physical Science Laboratory, 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243-0198, Japan
Tadashi Saitoh
Affiliation:
NTT Basic Research Laboratories, Physical Science Laboratory, 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243-0198, Japan
Kotaro Tsubaki
Affiliation:
NTT Basic Research Laboratories, Physical Science Laboratory, 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243-0198, Japan
Toshio Nishida
Affiliation:
NTT Basic Research Laboratories, Physical Science Laboratory, 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243-0198, Japan
Naoki Kobayashi
Affiliation:
NTT Basic Research Laboratories, Physical Science Laboratory, 3-1 Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243-0198, Japan
Get access

Abstract

Electron transport properties in the Al0.15Ga0.85N/GaN heterostructure field effect transistors (HFETs) have been examined from room temperature up to 400°C. The temperature dependencies of the two-dimensional electron gas (2DEG) mobility have been systematically measured for the samples with different 2DEG densities. The 2DEG mobility has decreased with increasing the temperature, however, its decrease ratio has been no longer large above 300°C. Moreover, the 2DEG mobility has found to be less dependent on the 2DEG density at higher temperatures. These observed features indicate that the 2DEG mobility above room temperature is limited by longitudinal optical (LO) phonon scattering, as is expected by theoretical prediction. The observed 2DEG mobilities at 400°C were as high as from 100 to 120 cm2/Vs, directly providing the evidence for suitability of the HFET of this material system for high-temperature applications. The temperature dependence of the transconductance (gm) of a HFET device has also been examined up to 400°C. It has been revealed that the temperature dependence of gm has basically the same features as those of the 2DEG mobility in the corresponding temperature region.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Khan, M.A., Chen, Q., Shur, M.S., Mcdermott, B.T., and Higgins, J.A.: IEEE Electron Device Lett. 17, 325 (1996).Google Scholar
2. Binari, S.C., Redwing, J. M., Kelner, G., and Kruppa, W.: Electron. Lett. 33, 242 (1997).Google Scholar
3. Wu, Y. F., Keller, B. P., Fini, P., Keller, S., Jenkins, T. J., Kehias, L. T., Denbaars, S. P., and Mishra, U. K.: IEEE Electron Device Lett. 19, 50 (1998).Google Scholar
4. Mishra, U. K., Wu, Y. F., Keller, B. P., Keller, S., and Denbaars, S. P.: IEEE Trans. Microwave Theory Tech. 46, 756 (1998).Google Scholar
5. Sheppard, S. T., Doverspike, K., Pribble, W. L., Allen, S. T., Palmour, J. W., Kehias, L. T., and Jenkins, T. J.: IEEE Electron Dev. Lett. 20, 161 (1999).Google Scholar
6. Kunihiro, K., Kasahara, K., Takahashi, Y., and Ohno, Y.: Ext. Abst. Int. Conf. Solid State Devices and Materials, Tokyo, 1999, 208 (Academic Societies Japan, Tokyo, 1999).Google Scholar
7. Khan, M. A., Shur, M. S., Kuznia, J. N., Chen, Q., Burm, J. and Schaff, W.: Appl. Phys. Lett. 66, 1083 (1995).Google Scholar
8. Gaska, R., Chen, Q., Yang, J., Osinsky, A., Khan, M. A., and Shur, M. S.: IEEE Electron Device Lett. 18, 492 (1997).Google Scholar
9. Daumiller, I., Kirchner, C., Kamp, M., Ebeling, K. J., Pond, L., Weitzel, C. E. and Kohn, E.: Proc. of Device Research Conf. Virginia, 1998, 114 (Publishing Services, IEEE, New York, 1998).Google Scholar
10. Maeda, N., Saitoh, T., Ttsubaki, K., Nishida, T., and Kobayashi, N.: Jpn. J. Appl. Phys. 38, L987 (1999).Google Scholar
11. Egawa, T., Ishikawa, H., Umeno, M., and Jimbo, T.: Appl. Phys. Lett. 76, 121 (2000).Google Scholar
12. Shur, M., Gelmont, B., and Khan, M. A.: J. Electron. Mat. 25, 777 (1996).Google Scholar
13. Albrecht, J. D., Wang, R. P., Ruden, P. P., Farahmand, M., and Brennan, K. F.: J. Appl. Phys. 83, 4777 (1998).Google Scholar
14. Ridley, B. K.: J. Appl. Phys. 84, 4020 (1998).Google Scholar
15. Ridley, B. K., Foutz, B. E., and Eastman, L. F.: Phys. Rev. B61, 16862 (2000).Google Scholar