Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T18:52:36.374Z Has data issue: false hasContentIssue false

High-Speed and Low-Power Performance of n-type InSb/InP and InAs/InP Core/Shell Nanowire Field Effect Transistors for CMOS Logic Applications

Published online by Cambridge University Press:  31 January 2011

Mohammad Abul Khayer
Affiliation:
mkhayer@ee.ucr.edu, UC Riverside, Electrical Engineering, 900 University Ave, Riverside, California, 92521, United States
Roger K Lake
Affiliation:
rlake@ee.ucr.edu, UC Riverside, Electrical Engineering, Riverside, California, United States
Get access

Abstract

The performance metrics of highly scaled n-type InSb/InP and InAs/InP core/shell nanowire (NW) field-effect transistors (FETs) are theoretically investigated using an 8-band k•p model and a semiclassical ballistic transport model. We present the ON-current, the intrinsic cut-off frequency, the gate-delay time, the power-delay product, and the energy-delay product of NWFETs with two NW diameters of 10 nm and 12 nm, which operate in the quantum capacitance limit. We compare the results to the numbers predicted or projected for other materials and dimensionalities and find good agreement. Within a source Fermi energy range of 0.1 – 0.3 eV for all devices, the ON-current varies from 7 – 58 μA, the intrinsic cut-off frequency ranges from 8 – 15 THz, the power-delay product varies from 2×10-20 – 9.7×10-19 J, the gate-delay time varies from 2 – 19 fs, and the energy-delay product ranges from 7×10-35 – 1×10-32 Js. These NWFETs, thus, provide both ultra-low power switching and high-speed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Sze, S. M. Physics of Semiconductors, 2nd ed. New York: John Wiley and Sons, 1981.Google Scholar
2 Woodall, J. M. et al. , J. Vac. Sci. Technol., 19, 626, 1981.Google Scholar
3 Datta, S. et al. , IEEE Int. Electron Devices Meeting Tech. Dig., 2005.Google Scholar
4 Ashley, T. et al. , IEEE Int. Electron Devices Meeting Tech. Dig., 751, 1997.Google Scholar
5 Chau, R. et al. , IEEE Trans. Nanotech Nanotechnol. nol., 4, 153, 2005.Google Scholar
6 Radosavljevic, M. et al. , IEEE Int. Electron Devices Meeting Tech. Dig., 727, 200, 2008. Google Scholar
7 Knoch, J. et al. , IEEE Electron Devices Lett., 29, 372, 2008.Google Scholar
8 Khayer, M. A. et al. , IEEE Int. Electron Devices Meeting Tech. Dig., 193, 2008. Google Scholar
9 Khayer, M. A. et al. , er, IEEE Trans. Electron Devices, 55, 2939, 2008.Google Scholar
10 Lind, E. et al. , Nano Lett., 6, 1842, 2006.Google Scholar
11 Dayeh, S. A. et al. , Small., 3, 326, 2007.Google Scholar
12 Bryllert, T. et al. , IEEE Electron Device Lett., 27, 323, 2006.Google Scholar
13 Thelander, C. et al. , Solid State Comm., 131, 5, 573, 2004.Google Scholar
14 Ng, H. T. et al. , Nano Lett., 4, 1247, 2004.Google Scholar
15 Li, N. et al. , Appl. Phys. Lett., 92, 143507, 2008.Google Scholar
16 Rahman, A. et al. , IEEE Trans. Electron Devices., 50, 1853, 2003.Google Scholar
17 Gershoni, D. et al. , IEEE J. Quantum Electron., 29, 2433, 1993.Google Scholar
18 Mamaluy, D. et al. , Phys. Rev. B., 71, 245321, 2005.Google Scholar
19 Foreman, B. A. et al. , Phys. Rev. B., 56, 748, 1997.Google Scholar
20 Vurgaftman, I. et al. , J. Appl. Phys., 89, 5815, 2001.Google Scholar
21 Adams, J. et al. , Appl. Math. And Comput., 34, 113, 1989.Google Scholar