Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-29T09:02:50.541Z Has data issue: false hasContentIssue false

High-Resolution Imaging of Coga/GaAs and Eras/GaAs Interfaces

Published online by Cambridge University Press:  25 February 2011

Jane G. Zhu
Affiliation:
Department of Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, NY 14853
Stuart McKeman
Affiliation:
Department of Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, NY 14853
Chris J. Palmstrøm
Affiliation:
Bellcore, 331 Newman Springs Road, Red Bank, NJ 07701
C. Barry Carter
Affiliation:
Department of Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, NY 14853
Get access

Abstract

CoGa/GaAs and ErAs/GaAs grown by molecular-beam epitaxy have been studied using high-resolution transmission electron microscopy (HRTEM). The epitactic interfaces have been shown to be abrupt on the atomic scale. Computer simulations of the HRTEM images have been obtained for different interface structures under various specimen and image conditions. Practical problems in the comparison between the simulated and experimental images are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sands, T., Harbison, J.P., Chan, W.K., Schwarz, S.A., Chang, C.C., Palmstrom, C.J., and Keramidas, V.G., Appl. Phys. Lett. 52, 1216 (1988).Google Scholar
2. Palmstrøm, C.J., Fimland, B.-O., Sands, T., Garrison, K.C., and Bartynski, R., J. Appl. Phys. 65, 4753 (1989).Google Scholar
3. Guivarc'h, A., Guérin, R., and Secoué, M., Electron. Lett. 23, 1004 (1987).Google Scholar
4. Palmstrøm, C.J., Tabatabaie, N., and A'len, S.J. Jr, Appl. Phys. Lett. 53, 2608 (1988).Google Scholar
5. Palmstrøm, C.J., Garrison, K.C., Mounier, S., Sands, T., Schwartz, C.L., Tabatabaie, N., Allen, S.J. Jr, Gilchrist, H.L., and Miceli, P.F., J. Vac. Sci. Technol. B 7, 747 (1989).Google Scholar
6. Richter, H.J., Smith, R.S., Herres, N., Seelmann-Eggebert, M., and Wennekers, P., Appl. Phys. Lett. 53, 99 (1988).Google Scholar
7.See, for example, Nakamura, T., Ikeda, M., Muto, S., and Umebu, I., Appl. Phys. Lett. 53, 379 (1988).Google Scholar
8. Zhu, J.G., Carter, C.B., Palmstrøm, C.J., and Garrison, K.C., Appl. Phys. Lett. 55, 39 (1989).Google Scholar
9. Villars, P. and Calvert, L.D., in Pearson's Handbook of CrystallographicData for Intermetallic Phases (American Society for Metals, Metals Park, Ohio, 1985).Google Scholar
10. Kilaas, R., Proc. 45th Annual EMSA meeting, 66 (1987).Google Scholar
11. Zhu, J. G., Palmstrom, C. J., and Carter, C. B., to be published in the EMAG-MICRO proceedings in the Institute of Physics Conference Series, London 1989.Google Scholar
12. Rasmussen, D.R., McKernan, S., and Carter, C.B., Proc. 47th Annual EMSA meeting, 130 (1989).Google Scholar