Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-04T06:41:07.804Z Has data issue: false hasContentIssue false

High-rate (> 1nm/s) and low-temperature (< 400°C) deposition of silicon nitride using an N2/SiH4 and NH3/SiH4 expanding thermal plasma

Published online by Cambridge University Press:  01 February 2011

J. Hong
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
W.M.M. Kessels
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
M.C.M. van de Sanden
Affiliation:
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
Get access

Abstract

High-rate (> 1 nm/s) and low-temperature (50– 400°C) deposition of silicon nitride (a-SiNx:H) films has been investigated by the expanding thermal plasma (ETP) technique using SiH4 as Si-containing and N2 or NH3 as N-containing precursor gases. The structural, optical and electrical properties of the a-SiNx:H films have been studied by elastic recoil detection, spectroscopic ellipsometry, infrared spectroscopy, dark conductivity measurements and atomic force microscopy. The film properties of the ETP deposited a-SiNx:H films in this low-temperature range are discussed in terms of deposition rate, atomic composition, UV-VIS optical and IR vibrational properties, conductivity, and surface topography of the films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Belyi, V.I., Vasilyeva, L.L., Ginkvker, A.S., Gritsenko, V.A., Repinsky, S.M., Sinitsa, S.P., Smirnova, T.P., and Edelman, F.L., Silicon nitride in electronics (Elsevier, Amsterdam, 1988), p. 34.Google Scholar
2. Hong, J., Kessels, W.M.M., F.J.H. van Assche, Rieffe, H.C., Soppe, W.J., Weeber, A.W., and Sanden, M.C.M. van de, Prog. Photovolt: Res. Appl. 11, 125 (2003).Google Scholar
3. Kessels, W.M.M., Hong, J., Assche, F.J.H. van, Moschner, M.D., Lauinger, T., Soppe, W.J., Weeber, A.W., Schram, D.C., and Sanden, M.C.M. van de, J. Vac. Sci. Technol. A 20, 1704 (2002).Google Scholar
4. Temple-Boyer, P., Rossi, C., Saint-Etienne, E., and Scheid, E., J. Vac. Sci. Technol. A 16, 2003 (1998).Google Scholar
5. Landheer, D., Skinner, N.G., Jackman, T.E., Thompson, D.A., Simmons, J.G., Stevanovic, D.V., and Khatamian, D., J. Vac. Sci. Technol. A 9, 2594 (1991).Google Scholar
6. Liao, W.S., Lin, C.H., and Lee, S.C., Appl. Phys. Lett. 65, 2299 (1994).Google Scholar
7. Jellison, G.E. Jr and Modine, F.A., Appl. Phys. Lett. 69, 371 (1996), ibid. 69, 2137 (1996).Google Scholar
8. Lee, S. and Hong, J., Jpn. J. Appl. Phys. 39, 241 (2000).Google Scholar
9. Robertson, J., Phil. Mag. B 69, 307 (1994).Google Scholar