Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-22T19:07:08.411Z Has data issue: false hasContentIssue false

High-Quality InAs/A1Sb Superlattices with AlAs and InSb Interfaces

Published online by Cambridge University Press:  22 February 2011

Brian R. Bennett
Affiliation:
Naval Research Laboratory, Washington, DC 20375-5347
B.V. Shanabrook
Affiliation:
Naval Research Laboratory, Washington, DC 20375-5347
E.R. Glaser
Affiliation:
Naval Research Laboratory, Washington, DC 20375-5347
R.J. Wagner
Affiliation:
Naval Research Laboratory, Washington, DC 20375-5347
Get access

Abstract

The presence of two species of both cations and anions permits the construction of InAs/AlSb heterostructures with either AlAs- or InSb-like interfaces. InAs/AlSb superlattices with both types of interfaces were grown using migration-enhanced epitaxial techniques. The layer quality and control of interfacial composition were confirmed by x-ray diffraction, Raman spectroscopy, and photoluminescence measurements. We demonstrate that high-quality superlattices with both InSb- and AlAs-bonded interfaces can be achieved with appropriate growth temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Soderstrom, J.R., Chow, D.H., and McGill, T.C., J. Appl. Phys. 66, 5106 (1989).Google Scholar
[2] Werking, J.D., Bolognesi, C.R., Chang, L.D., Nguyen, C., Hu, E.L., and Kroemer, H., IEEE Electron Dev. Lett. 13, 164 (1992).Google Scholar
[3] Tuttle, G., Kroemer, H., and English, J.H., J. Appl. Phys. 67, 3032 (1990).Google Scholar
[4] Yano, M., Okuizumi, M., Iwai, Y., and Inoue, M., J. Appl. Phys. 74, 7472 (1993).Google Scholar
[5] Brar, B., Kroemer, H., Ibbetson, J., and English, J.H., Appl. Phys. Lett. 62, 3303 (1993).Google Scholar
[6] Spitzer, J., Fuchs, H.D., Etchegoin, P., Ilg, M., Cardona, M., Brar, B., and Kroemer, H., Appl. Phys. Lett. 62, 2274 (1993).Google Scholar
[7] Shanabrook, B.V., Waterman, J.R., Davis, J.L., and Wagner, R.J., Appl. Phys. Lett. 61, 2338 (1992).Google Scholar
[8] Chow, D.H., Miles, R.H., and Hunter, A.T., J. Vac. Sci. Technol. B10, 888 (1992).Google Scholar
[9] Bennett, B.R., Shanabrook, B.V., and Glaser, E.R., submitted to Appl. Phys. Lett. Google Scholar
[10] Dandrea, R.G. and Duke, C.B., Appl. Phys. Lett. 63, 1795 (1993).Google Scholar
[11] Waterman, J.R., Shanabrook, B.V., Wagner, R.J., Yang, M.J., Davis, J.L., and Omaggio, J.P., Semicond.Sci. Technol. 8, S106 (1993).Google Scholar
[12] Fasolino, A., Molinari, E., and Maan, J.C., Phys. Rev. B 39, 3923 (1989).Google Scholar
[13] Bennett, B.R., Shanabrook, B.V., Wagner, R.J., Davis, J.L., and Waterman, J.R., Appl. Phys. Lett. 63, 949 (1993).Google Scholar
[14] Shanabrook, B.V., Bennett, B.R., and Wagner, R.J., Phys. Rev. B 48, 17172 (1993).Google Scholar
[15] Sela, I., Bolognesi, C.R., and Kroemer, H., Phys. Rev. B 46, 16142 (1992).Google Scholar
[16] Shanabrook, B.V. and Bennett, B.R., submitted to Phys. Rev. B Google Scholar
[17] Sela, I., Bolognesi, C.R., Somoska, L.A., and Kroemer, H., Appl. Phys. Lett. 60, 3283 (1992).Google Scholar
[18] Iwai, Y., Yano, M., Hagiwara, R., and Inoue, M., Surface Science 267, 434 (1992).Google Scholar
[19] Seta, M., Asahi, H., Kim, S.G., Asami, K., and Gonda, S., J. Appl. Phys. 74, 5033 (1993).Google Scholar