Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-19T12:28:38.330Z Has data issue: false hasContentIssue false

Highly p-Type a-GaN Grown on r-Plane Sapphire Substrate

Published online by Cambridge University Press:  01 February 2011

Yosuke Tsuchiya
Affiliation:
m0534015@ccmailg.meijo-u.ac.jp, MeijoUniversity, Department of Materials Science and Engineering, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, N/A, 468-8502, Japan, +81-52-832-1151, +81-52-832-1298
Yoshizane Okadome
Affiliation:
m0534008@ccmailg.meijo-u.ac.jp
Hiroko Furukawa
Affiliation:
m0534028@ccmailg.meijo-u.ac.jp
Akira Honshio
Affiliation:
m0434036@ccmailg.meijo-u.ac.jp
Yasuto Miyake
Affiliation:
m0434041@ccmailg.meijo-u.ac.jp
Takeshi Kawashima
Affiliation:
m0541504@ccmailg.meijo-u.ac.jp
Motoaki Iwaya
Affiliation:
iwaya@ccmfs.meijo-u.ac.jp
Satoshi Kamiyama
Affiliation:
skami@ccmfs.meijo-u.ac.jp
Hiroshi Amano
Affiliation:
amano@ccmfs.meijo-u.ac.jp
Isamu Akasaki
Affiliation:
akasaki@ccmfs.meijo-u.ac.jp
Get access

Abstract

Mg-doped p-type a-plane GaN films were grown on unintentionally doped a-plane GaN templates by metalorganic vapor phase epitaxy (MOVPE). The Mg concentration in a-plane GaN increased with increasing Mg source gas flow rate. A maximum hole concentration of 2.0 × 1018 cm-3 with a hole mobility of 4.5 cm2/Vs and resistivity of 0.7 Ω·cm were achieved. The activation ratio was 5.0 × 10-2. It was found that a maximum hole concentration in p-type a-plane GaN was higher than that in p-type c-plane GaN. The activation energy of Mg acceptors in p-type a-plane GaN with the maximum hole concentration was found to be 118 meV by temperature-dependent Hall-effect measurement.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Amano, H., Sawaki, N., Akasaki, I. and Toyoda, Y.: Appl. Phys. Lett. 48 (1986) 353.CrossRefGoogle Scholar
[2] Amano, H. and Akasaki, I.: Mat. Res. Soc. Ext Abstr. EA–21 (1991) 165.Google Scholar
[3] Amano, H., Kito, M., Hiramatsu, K. and Akasaki, I.: Jpn. J. Appl. Phys. 28 (1989) L2112.CrossRefGoogle Scholar
[4] Amano, H., Kitoh, M., Hiramatsu, K. and Akasaki, I.: J. Electrochem. Soc. 137 (1990) 1639.CrossRefGoogle Scholar
[5] Takeuchi, T., Sota, S., Katsuragawa, M., Komori, M., Takeuchi, H., Amano, H. and Akasaki, I.: Jpn. J. Appl. Phys. 36 (1997) L382.Google Scholar
[6] Takeuchi, T., Amano, H. and Akasaki, I.: Jpn. J. Appl. Phys. 39 (2000) 413.Google Scholar
[7] Chen, C., Zhang, J., Yang, J., Adivarahan, V., Rai, S., Wu, S., Wang, H., Sun, W., Su, M., Gong, Z., Kuokstis, E., Gaevski, M. and Khan, M. A.: Jpn. J. Appl. Phys. 42 (2003) L818.CrossRefGoogle Scholar
[8] Chakraborty, A., Xing, H., Craven, M. D., Keller, S., Mates, T., Speck, J. S., DenBaars, S. P. and Mishrab, U. K.: J. Appl. Phys. 96 (2004) 4494.CrossRefGoogle Scholar
[9] Honshio, A., Miyake, Y., Kasugai, H., Kawashima, T., Iida, K., Tsuda, M., Iwaya, M., Kamiyama, S., Amano, H. and Akasaki, I.: Ext. Abstr. (65th Autumn Meeting 2004); Japan Society of Applied Physics and Related Societies, 2a-W-2.Google Scholar
[10] Imura, M., Honshio, A., Nakano, K., Tsuda, M., Iwaya, M., Kamiyama, S., Amano, H. and Akasaki, I.: Jpn. J. Appl. Phys. 44 (2005) 7418.Google Scholar
[11] Tsuchiya, Y., Okadome, Y., Furukawa, H., Honshio, A., Miyake, Y., Kawashima, T., Iwaya, M., Kamiyama, S., Amano, H. and Akasaki, I.: submitted to Jpn. J. Appl. Phys.Google Scholar
[12] Schubert, E. F.: Doping in III-V Semiconductors (Cambridge University Press, Cambridge, United Kingdom, 1993) p. 130.Google Scholar
[13] Jeong, S.M., Shim, H. W., Yoon, H. S., Cheong, M. G., Choi, R. J., Suh, E.-K., Lee, H. J. J. Appl. Phys. 91 (2002) 9711.Google Scholar