Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-11T22:20:46.363Z Has data issue: false hasContentIssue false

Highly Efficient Porous Enzyme-based Carbonaceous Electrodes Obtained Through Integrative Chemistry

Published online by Cambridge University Press:  14 January 2013

Victoria Flexer
Affiliation:
Centre de Recherche Paul Pascal, UPR 8641-CNRS, Université de Bordeaux, 115 Avenue Albert Schweitzer, 33600 Pessac, France.
Nicolas Brun
Affiliation:
Centre de Recherche Paul Pascal, UPR 8641-CNRS, Université de Bordeaux, 115 Avenue Albert Schweitzer, 33600 Pessac, France.
Rénal Backov
Affiliation:
Centre de Recherche Paul Pascal, UPR 8641-CNRS, Université de Bordeaux, 115 Avenue Albert Schweitzer, 33600 Pessac, France.
Nicolas Mano
Affiliation:
Centre de Recherche Paul Pascal, UPR 8641-CNRS, Université de Bordeaux, 115 Avenue Albert Schweitzer, 33600 Pessac, France.
Get access

Abstract

This work concerns the search for new electrode materials for efficient biofuel cells applications. Using a hard templating method we prepared carbonaceous electrodes modified further with Glucose Oxidase and Os polymer. The glucose electrooxidation current is 13-fold bigger on the porous electrode than on flat glassy carbon for the same enzyme loading. These electrodes are three dimensional and posses hierarchical porosity, to optimize the need for both surface area and efficient fuel delivery Although, the dependence of the catalytic current with the rotation rate suggests that the size and quantity of the macropores is not yet fully optimized, the electrode preparation protocol is simple and low cost, and can be easily adapted to tune the pore sizes. The mechanical strength and the synthetic route allow for the external shape and size of the electrodes to be designed on demand, an important feature to incorporate electrodes into devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barton, S. C., Gallaway, J., Atanassov, P., Chem. Rev. 104, 4867 (2004).CrossRefGoogle Scholar
Bullen, R. A., Arnot, T. C., Lakeman, J. B., Walsh, F. C., Biosens Bioelectron 21, 2015 (2006).CrossRefGoogle Scholar
Minteer, S. D., Liaw, B. Y., Cooney, M. J., Curr. Opin. Biotechnol. 18, 228 (2007).CrossRefGoogle Scholar
Brun, N., Prabaharan, S. R. S., Morcrette, M., Sanchez, C., Pécastaings, G., Derré, A., Soum, A., Deleuze, H., Birot, M., Backov, R., Adv. Funct. Mater. 19, 3136 (2009).CrossRefGoogle Scholar
Moehlenbrock, M. J., Arechederra, R. L., Sjöholm, K. H., Minteer, S. D., Anal. Chem. 81, 9538 (2009).CrossRefGoogle Scholar
Sarma, A. K., Vatsyayan, P., Goswami, P., Minteer, S. D., Biosens Bioelectron 24, 2313 (2009).CrossRefGoogle Scholar
Cooney, M. J., Lau, C., Windmeisser, M., Liaw, B. Y., Klotzbach, T., Minteer, S. D., J. Mater. Chem. 18, 667 (2008).CrossRefGoogle Scholar
Sakai, H., Nakagawa, T., Tokita, Y., Hatazawa, T., Ikeda, T., Tsujimura, S., Kano, K., Energy Environ. Sci. 2, 133 (2009).CrossRefGoogle Scholar
Gao, F., Courjean, O., Mano, N., Biosens Bioelectron 25, 356 (2009).CrossRefGoogle Scholar
Mano, N., Fernandez, J. L., Kim, Y., Shin, W., Bard, A. J., Heller, A., J. Am. Chem. Soc. 125, 15290 (2003).CrossRefGoogle Scholar
Carn, F., Colin, A., Achard, M. F., Deleuze, H., Sellier, E., Birot, M., Backov, R., J. Mater. Chem. 14, 1370 (2004).CrossRefGoogle Scholar
Bard, A. J., Faulkner, L. R., Electrochemical Methods, Fundamental and Applications, Wiley VCH, New York (2001).Google Scholar