Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-28T09:56:12.288Z Has data issue: false hasContentIssue false

Highly Efficient Nitrogen Doping Into GaAs Using Low-Energy Nitrogen Molecular Ions

Published online by Cambridge University Press:  10 February 2011

Takayuki Shima
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305-8568, Japan Industrial Technology Researcher of the New Energy and Industrial Technology Development Organization
Yunosuke Makita
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305-8568, Japan
Shinji Kimura
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305-8568, Japan
Hirokazu Sanpei
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305-8568, Japan On leave from Tokai University, 1117 Kitakaname, Hiratsuka 259-1292, Japan
Yasuhiro Fukuzawa
Affiliation:
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba 305-8568, Japan On leave from Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro, Minamisaitama 345-8501, Japan
Get access

Abstract

Low-energy N2+ molecular-ions were irradiated during the epitaxial growth of GaAs. Ion acceleration energy and ion beam current density were varied in the range of 30-200 eV and 3-37 nA/cm2, respectively. GaAs growth rate was kept constant at 1µm/ h and the thickness of N-doped GaAs layer was about 1 µm. N concentration was obtained by using secondary ion mass spectroscopy. Strong N-related emissions were observed in the low-temperature photoluminescence spectra, which indicates that N atom is efficiently substituted at As site and is optically active as an isoelectronic impurity

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kondow, M., Nakatsuka, S., Kitatani, T., Yazawa, Y., and Okai, M., Jpn. J.Appl. Phys. 35, 5711(1996).Google Scholar
[2] Kondow, M., Uomi, K., Hosomi, K., and Mozume, T., Jpn. J. Appl. Phys. 33, L1056(1994).Google Scholar
[3] Uesugi, K. and Suemune, I., Jpn. J. Appl. Phys. 36, L1572(1997).Google Scholar
[4] Shima, T., Makita, Y., Kimura, S., Iida, T., Fang, X., Jiang, D., Kudo, K., and Tanaka, K., Nucl. Instr. and Meth. in Phys. Res. B120, 293(1996).Google Scholar
[5] Schwabe, R., Seifert, W., Bugge, F., Bindemann, R., Agekyan, V.F., and Pogarev, S.V., Solid State Commun. 55, 167(1985).Google Scholar
[6] lida, T., Makita, Y., Kimura, S., Winter, S., Yamada, A., Fons, P., and Uekusa, S., J. Appl. Phys. 77, 146(1995).Google Scholar
[7] Baldwin, D.A., Murray, P.T., and Rabalays, J.W., Chem. Phys. Lett. 77, 403(1981).Google Scholar
[8] Makimoto, T. and Kobayashi, N., Appl. Phys. Lett. 67, 688(1995).Google Scholar
[9] Shima, T., Makita, Y., Kimura, S., lida, T., Sanpei, H., Yamaguchi, M., Sandhu, A., and Hoshino, Y., Nucl. Instr. and Meth. in Phys. Res. B127/128, 437(1997).Google Scholar
[10] Shima, T., Makita, Y., Kimura, S., Sanpei, H., and Sandhu, A., Mater. Sci. Engineer. A (in press).Google Scholar
[11] Makimoto, T., Saito, H., Nishida, T., and Kobayashi, N., Appl. Phys. Lett. 70, 2984(1997).Google Scholar
[12] For example, Yamada, I., Nucl. Instr. and Meth. in Phys. Res. B112, 242(1996).Google Scholar
[13] Brice, D.K., Tsao, J.Y., and Picraux, S.T., Nucl. Instr. and Meth. in Phys. Res. B44, 68(1989).Google Scholar