Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-24T01:09:15.713Z Has data issue: false hasContentIssue false

Highly Doped P-Type and N-Type ZnS, ZnSe, CdS and CdSe Thin Films Growth by Pulsed Laser Deposition

Published online by Cambridge University Press:  22 February 2011

Wenpin P. Shen
Affiliation:
Department of Electrical and Computer Engineering, State University of New York at Buffalo, Amherst, NY 14260
Hoi S. Kwok
Affiliation:
Department of Electrical and Computer Engineering, State University of New York at Buffalo, Amherst, NY 14260 Department of Electrical and Electronics Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
Get access

Abstract

ZnS, ZnSe, CdS and CdSe thin films were grown on InP or GaAs substrates with high ptype and n-type doping concentrations by pulsed excimer laser deposition without any postannealing processing. The x-ray diffraction results showed that these thin films were fully epitaxial (in-plane aligned). These high quality films are suitable for use as optoelectronic devices which will operate in the visible region of the spectrum.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Daneu, V., DeGloria, D. P., Sanchez, A., Tong, F., and Osgood, R. M. Jr, Appl. Phys. Lett. 49, 546 (1986).Google Scholar
2. Brilt, J. and Ferekides, C., Appl. Phys. Lett. 62, 2851 (1993).Google Scholar
3. Dagenais, M. and Sharfin, W. F., Appl. Phys. Lett. 46, 230 (1985).Google Scholar
4. Laks, D. B., Walle, C. G. Van de, Neumark, G. F., and Pantelides, S. T., Appl. Phys. Lett. 63, 1375 (1993).Google Scholar
5. Neumark, G. F., J. Appl. Phys. 51, 3383 (1980).Google Scholar
6. Bhargava, R. N., Seymour, R. J., Fitzpatrick, B. J., and Herko, S. P., Phys. Rev. B, 20, 2407 (1979).Google Scholar
7. Henry, C. H., Nassau, K., and Shiever, J. W., Phys. Rev. B, 4, 2453 (1971).Google Scholar
8. Mandel, G., Morehead, F. F., and Wagner, P. R., Phys. Rev., 136, A827 (1964).Google Scholar
9. Haase, M. A., Cheng, H., DePuydt, J. M., and Potts, J. E., J. Appl. Phys., 67, 448 (1990).Google Scholar
10. Haase, M. A., Qiu, J., DePuydt, J. M., and Cheng, H., Appl. Phys. Lett. 59, 1272 (1991).Google Scholar
11. lida, S., Yatabe, T., and Kinto, H., Jpn. J. Appl. Phys., 28, L535 (1989).Google Scholar
12. Kwok, H.S., Zheng, J. P., Witanachchi, S., Mattocks, P., Shi, L., Ying, Q. Y., Wang, X. W., and Shaw, D. T., Appl. Phys. Lett., 52, 1095 (1988).Google Scholar
13. Kwok, H. S., Zheng, J. P., Witanachchi, S., Shi, L., and Shaw, D. T., Appl. Phys. Lett., 52, 1815 (1988).Google Scholar
14. McCamy, J.W. and Lowndes, D. H., Appl. Phys. Lett., 63, 3008 (1993).Google Scholar
15. Cheung, J. T. and Madden, J., J. Vac. Sci. Technol. B5, 705 (1987).Google Scholar
16. Dubowski, J. J., Williams, D. F., Sewell, P. B., and Norman, P., Appl. Phys. Lett., 46, 1081 (1985).Google Scholar
17. Cheung, J. T. and Sankur, H., CRC Crit. Rev. Solid State Mater. Sci., 15, 63 (1988).Google Scholar
18. Cheung, J. T., Appl. Phys. Lett., 51, 1940 (1987).Google Scholar
19. Wu, Y. H., Kawakami, Y., Fujita, S., and Fujita, S., Jpn. J. Appl. Phys., 29, L1062 (1990).Google Scholar
20. Schroder, D. K., Semiconductor Material and Device Characterization, John Willy & Sons, Inc. (1990).Google Scholar
21. Sze, S. M., Physics of Semiconductor Devices, 2nd edition, John Willy & Sons, Inc. (1981).Google Scholar
22. Sebastian, P.J., Appl. Phys. Lett., 62, 2956 (1993).Google Scholar
23. Kashiwaba, Y., Kanno, I., and Ikeda, T., Jpn. J. Appl. Phys., 31, 1170 (1992).Google Scholar