Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-04T18:14:01.853Z Has data issue: false hasContentIssue false

High-Density Plasma-Induced Etch Damage of GaN

Published online by Cambridge University Press:  10 February 2011

R. J. Shul
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–0603, rjshul@sandia.gov
L. Zhang
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–0603, rjshul@sandia.gov
A. G. Baca
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–0603, rjshul@sandia.gov
C. G. Willison
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–0603, rjshul@sandia.gov
J. Han
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185–0603, rjshul@sandia.gov
S. J. Pearton
Affiliation:
University of Florida, Department of Materials Science and Engineering Gainesville, FL 32611
F. Ren
Affiliation:
University of Florida, Department of Materials Science and Engineering Gainesville, FL 32611
J. C. Zolper
Affiliation:
Office of Naval Research, Arlington, VA 22217
L. F. Lester
Affiliation:
University of New Mexico, Center for High Technology Materials, Albuquerque, NM 87106
Get access

Abstract

Anisotropic, smooth etching of the group-Ill nitrides has been reported at relatively high rates in high-density plasma etch systems. However, such etch results are often obtained under high dc-bias and/or high plasma flux conditions where plasma induced damage can be significant. Despite the fact that the group-III nitrides have higher bonding energies than more conventional III–V compounds, plasma-induced etch damage is still a concern. Attempts to minimize such damage by reducing the ion energy or increasing the chemical activity in the plasma often result in a loss of etch rate or anisotropy which significantly limits critical dimensions and reduces the utility of the process for device applications requiring vertical etch profiles. It is therefore necessary to develop plasma etch processes which couple anisotropy for critical dimension and sidewall profile control and high etch rates with low-damage for optimum device performance. In this study we report changes in sheet resistance and contact resistance for n- and p-type GaN samples exposed to an Ar inductively coupled plasma (ICP). In general, plasma-induced damage was more sensitive to ion bombardment energies as compared to plasma flux. In addition, p-GaN was typically more sensitive to plasma-induced damage as compared to n-GaN.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. McCarthy, L. S., Kozodoy, P., DenBarrs, S. P., Rodwell, M., and Mishra, U. K., 25th Int. Symp. Compound Semicond., Oct. 1998, Nara, Japan.Google Scholar
2. Ren, F., Abernathy, C. R., Van Hove, J. M., Chow, P. P., Hickman, R., Klassen, J. J., Kopf, R. F., Cho, H., Jung, K. B., LaRoche, J. R., Wilson, R. G., Han, J., Shul, R. J., Baca, A. G., and Pearton, S. J., MRS Internet J. Nitride Semicond. Res. 3 41 (1998).Google Scholar
3. Han, J., Baca, A. G., Shul, R. J., Willison, C. G., Zhang, L., Ren, F., Zhang, A. P., Dang, G. T., Donovan, S. M., Cao, X. A., Cho, H., Jung, K. B., Abernathy, C. R., Pearton, S. J., and Wilson, R. G., Appl. Phys. Lett, submitted 1/98.Google Scholar
4. Smith, S. A., Wolden, C. A., Bremser, M. D., Hanser, A. D., and Davis, R. F., Appl. Phys. Lett. 71,3631, 1997.Google Scholar
5. Lee, Y. H., Kim, H. S., Kwon, W. S., Yeom, G. Y., Lee, J. W., Yoo, M. C., and Kim, T. I., J. Vac. Sci. Technol. A16,1478 (1998).Google Scholar
6. Cho, Hyun, Hong, J., Maeda, T., Donovan, S. M., Abernathy, C. R., Pearton, S. J., Shul, R. J., and Han, J., J. Electron. Mats. 27, 915 (1998).Google Scholar
7. Shul, R. J., Willison, C. G., Bridges, M. M., Han, J., Lee, J. W., Pearton, S. J., Abernathy, C. R., MacKenzie, J. D., Donovan, S. M., Zhang, L., and Lester, L. F., J. Vac. Sci. Technol A16, 1621 (1998).Google Scholar
8. Shul, R. J., Willison, C. G., Bridges, M. M., Han, J., Lee, J. W., Pearton, S. J., Abernathy, C. R., MacKenzie, J. D., Donovan, S. M., Mat. Res. Soc. Symp. Proc. Vol. 483, 155 (1998).Google Scholar
9. Shul, R. J., Ashby, C. I. H., Willison, C. G., Zhang, L., Han, J., Bridges, M. M., Pearton, S. J., Lee, J. W., and Lester, L. F., Mats. Res. Soc. Symp. Proc. 512, 487 (1998).Google Scholar
10. Shul, R. J., Zhang, L., Willison, C. G., Han, J., Pearton, S. J., Hong, J., Abernathy, C. R., and Lester, L. F., MRS Internet J. Nitride Semicond., submitted 11/98.Google Scholar
11. Pearton, S. J., Appl. Surf. Sci. 117/118, 597 (1997).Google Scholar
12. Pearton, S. J. and Shul, R. J., in Defects in Optoelectronic Materials. ed. Pang, S. W. and Wada, O. (Gordon and Breach, The Netherlands, in press).Google Scholar
13. Pang, S. W., J. Electrochem. Soc. 133, 784 (1986).Google Scholar
14. Ren, F., Lothian, J. R., Pearton, S. J., Abernathy, C. R., Vartuli, C. B., MacKenzie, J. D., Wilson, R. G., and Karlicek, R. F., J. Electron. Mater. 26 1287 (1997).Google Scholar
15. Ping, A. T., Schmitz, A. C., Adesida, I., Khan, M. A., Chen, O., and Yang, Y. W., J. Electron. Mater. 26 266 (1997).Google Scholar
16. Ng, T.-B., Han, J., Biefeld, R. M., and Weckwerth, M. V., J. Electron. Mat. 27, 190 (1998)Google Scholar
17. Van Hove, J. M., Chow, P. P., Klaassen, J. J., Hickman, R., Wowchak, A. M., Croswell, D. R., Polley, C., Mater. Res. Soc. Symp. Proc. 468, 51 (1997).Google Scholar
18. Lester, L. F., Brown, J. M., Ramer, J. C., Zhang, L., Hersee, S. D., and Zolper, J. C., Appl. Phys. Lerr 69 2737 (1996).Google Scholar