Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-25T08:08:23.120Z Has data issue: false hasContentIssue false

High Temperature Photoluminescence and Photoluminescence Excitation Spectroscopy of Er Doped Gallium Nitride

Published online by Cambridge University Press:  10 February 2011

U. Hömmerich
Affiliation:
Hampton University, Department of Physics, Research Center for Optical Physics, Hampton, VA 23668 hommeric@gprc.hamptonu.edu
Myo Thaik
Affiliation:
Hampton University, Department of Physics, Research Center for Optical Physics, Hampton, VA 23668 hommeric@gprc.hamptonu.edu
T. Robinson-Brown
Affiliation:
Hampton University, Department of Physics, Research Center for Optical Physics, Hampton, VA 23668 hommeric@gprc.hamptonu.edu
J. D. MacKenzie
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32611
C. R. Abemathy
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32611
S. J. Pearton
Affiliation:
University of Florida, Department of Materials Science and Engineering, Gainesville, FL 32611
R. G. Wilson
Affiliation:
Hughes Research Laboratories, Malibu, CA 90265
R. N. Schwartz
Affiliation:
Hughes Research Laboratories, Malibu, CA 90265
J. M. Zavada
Affiliation:
U.S. Army Research Office, Research Triangle Park, NC 27709
Get access

Abstract

We report results of high temperature photoluminescence and photoluminescence excitation studies of Er doped GaN. Er was doped into GaN either by ion-implantation or during growth by metalorganic molecular beam epitaxy (MOMBE). Using above gap excitation (λex=325nm), GaN:Er showed strong 1.54 μm Er3+ luminescence up to 550K which indicates the potential of this material for high temperature opto-electronic applications. In addition, we performed timeresolved photoluminescence excitation (PLE) measurements over the wavelength range 420 to 680 nm using a Nd:YAG pumped Optical Parametric Oscillator (OPO). Similar to our previous PLE results of Er doped AIN, we observed that Er3+ ions in GaN can be excited either through resonant pumping of Er3+ energy levels or through energy-transfer processes involving defect states. The relative contribution of direct and indirect Er3+ excitation, however, seems to depend on the material preparation method.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pomrenke, G. S., Klein, P. B., and Langer, D. W., Rare Earth Doped Semiconductors, Material Research Society Symposium Proceedings Vol.301, Material Research Society, Pittsburg, 1993.Google Scholar
2. Coffa, S., Polman, A., and Schwartz, R.N., Rare Earth doped Semiconductors II, Materials Research Society Symposium Proceedings, Vol.422, Material Research Society, Pittsburgh, PA, 1996.Google Scholar
3. Favennec, P. N., L'Haridon, H., Salvi, M., Moutonnet, D., and Le Guillou, Y., Electron. Lett. 25, 718 (1989).Google Scholar
4. Neuhalfen, A.J. and Wessels, B.W., Appl. Phys. Lett. 60, 2657 (1992).10.1063/1.106886Google Scholar
5. Zavada, J. M. and Zhang, D., Solid-State Electronics, Vol.38, No.7, 1285 (1995).Google Scholar
6. See MRS Bulletin, Vol.22, No.2 (1997) for an overview of GaN and Related Materials.Google Scholar
7. Wilson, R. G., Schwartz, R. N., Abernathy, C. R., Pearton, S. J., Newman, N., Rubin, M., Fu, T., and Zavada, J. M., Appl. Phys. Lett. 65, 992 (1994).Google Scholar
8. Qui, C.H., Leksono, M. W., Pankove, J. I., Torvik, J. T., Feuerstein, R. J., and Namavar, F., Appl. Phys. Lett. 66, 562 (1995).Google Scholar
9. Silkowski, E., Yeo, Y.K., Hengehold, R. L., Goldenberg, B., and Pomrenke, G. S., MRS Proceedings, Vol.422, 69 (1996).Google Scholar
10. Kim, S., Rhee, S. J., Turnbull, D. A., Reuter, E. E., Li, X., Coleman, J. J., and Bishop, S. G., Appl. Phys. Lett. 71, 231 (1997).Google Scholar
11. Thaik, Myo, Hömmerich, U., Schwartz, R. N., Wilson, R. G., and Zavada, J.M., Appl. Phys. Lett., Appl. Phys. Lett. 71, 2641 (1997).Google Scholar
12. Torvik, J. T., Qui, C. H., Feuerstein, R. J., Pankove, J. I., and Namavar, F., J. Appl. Phys. 81, 6343 (1997).Google Scholar
13. MacKenzie, J. D., Abernathy, C. R., Pearton, S. J., Hömmerich, U., Wu, X., Schwartz, R. N., Wilson, R. G., Zavada, J. M., J. Cryst. Growth 175/176, 84 (1997).Google Scholar
14. Mackenzie, J. D., Abernathy, C. R., Pearton, S. J., Krishnamoorthy, V., Bharatan, S., Jones, K. S., and Wilson, R. G., Appl. Phys. Lett., 67 253 (1995).Google Scholar
15. Kik, P. G., A de Dood, M. J., Kikoin, K. and Polman, A., Appl. Phys. Lett. 70, 1721 (1997).Google Scholar
16. Wu, X., Hömmerich, U., MacKenzie, J. D., Abernathy, C. R., Pearton, S. J., Schwartz, R. N., Wilson, R. G., and Zavada, J. M., Appl. Phys. Lett. 70, 2126 (1997).Google Scholar
17. Miniscalco, W. J., J. of Lightwave Techn. 9, 234 (1991).10.1109/50.65882Google Scholar