Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-17T08:40:45.015Z Has data issue: false hasContentIssue false

High Temperature Oxidation Behavior of Strucflural Siucides

Published online by Cambridge University Press:  25 February 2011

C. E. Ramberg
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
P. Beatrice
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
K. Kurokawa
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
W. L. Worrell
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
Get access

Abstract

The factors which control the formation of a protective silica (SiO2) layer on structural silicides at high temperature are summarized. The thermodynamic and kinetic conditions under which both silica and a metal oxide can form are also described. Molybdenum disilicide (MoSi2) forms highly protective silica scales and has the best oxidation resistance at high temperatures. Although the preparation method has little influence, the heating rate and the structure of the silica layer have significant effects on the oxidation behavior of MoSi2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Schwettmann, F.N., Graft, R.A., and Kolodney, M., J. Electrochem. Soc. 118 (12), 19731977 (1971).CrossRefGoogle Scholar
2 Abba, A., Galerie, A., and Caillet, M., Oxid. Met. 17 (1), 4354 (1982).CrossRefGoogle Scholar
3 Schultz, p.C. and Smyth, H. T., in Amorphous Materials edited by Douglas, R. W. and Ellis, B., (John Wiley and Sons, London, 1972) p. 453461.Google Scholar
4 Evans, D. L., J. Am. Ceram. Soc. 53 [7] 418419 (1970).CrossRefGoogle Scholar
5 Binary Alloy Phase Diagrams, Second Edition, edited by Massalski, T. B. (ASM International, Materials Park OH, 1990)Google Scholar
6 J. Phys. Chem. Ref Data, Vol. 14, Suppl. 1, 1985 (JANAF Thermochemical Tables) Third Edition, edited by Chase, M. W. et al. (American Chemical Society/ American Institute of Physics, 1985).Google Scholar
7 Brumm, M.W. and Grabke, H.J., Corr. Sci. 33 (11), 16771690 (1992).CrossRefGoogle Scholar
8 Pettit, F.S., Trans. AIME 239 12961305 (1967).Google Scholar
9 Smialek, J. L, Met. Trans. 9A 309320 (1978).CrossRefGoogle Scholar
10 Costello, J. A. and Tressler, R. E., J. Am. Ceram. Soc. 69 (9) 674681 (1986).CrossRefGoogle Scholar
11 Ramberg, C. E.& M. S. Thesis, The Pennsylvania State University, 1992.Google Scholar
12 Wagner, C., Atom Movements p. 153173, American Society for Metals, Cleveland OH (1951).Google Scholar
13 Deal, B. E. and Grove, A S., J. App. Phys., 36 [12] 37703778 (1965).CrossRefGoogle Scholar
14 Lublin, P. and Sama, L, Am. Ceram. Soc. Bull. 46 (11), 10831090 (1967).Google Scholar
15 Lavendel, H.W. and Elliot, A.G., Trans. AIME 239 143148 (1967).Google Scholar
16 Berkowitz-Mattuck, J. and Dils, R.R., J. Electrochem. Soc. 112 (6), 583589 (1965).CrossRefGoogle Scholar
17 Fitzer, E., Ceramic Transactions Volume 10, Corrosion and Corrosive Degradation of Advanced Ceramics, edited by Tressler, R. E. and McNallan, M., The American Ceramic Society, Inc. 1941 (1990).Google Scholar
18 Mochizuki, T. and Kashiwagi, M., J. Electrochem. Soc. 127 (5), 11281135 (1980).CrossRefGoogle Scholar
19 Chang, Y.A., J. Mat. Sci. 4 641643 (1969).CrossRefGoogle Scholar
20 Wirkus, C.D. and Wilder, D.R., J. Am. Ceram. Soc. 49 (4), 173177 (1966).CrossRefGoogle Scholar
21 Bartlett, R.W., McCamont, J.W., and Gage, P.R., J. Am. Ceram. Soc. 48 (11), 551558 (1965).CrossRefGoogle Scholar
22 Searcy, A.W. and Finnie, L.N., J. Am. Ceram. Soc. 45 (6), 268273 (1962).CrossRefGoogle Scholar
23 Narushima, T., Goto, T., and Hirai, T., J. Am. Ceram. Soc. 72 (8) 13861390 (1989).CrossRefGoogle Scholar