Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T03:42:03.144Z Has data issue: false hasContentIssue false

High Temperature Hardness of Bulk Single Crystal GaN

Published online by Cambridge University Press:  03 September 2012

I. Yonenaga
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
T. Hoshi
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
A. Usui
Affiliation:
Opto-electronics and High Frequency Device Research Laboratories, NEC Corporation, Tsukuba 305-8501, Japan
Get access

Abstract

The hardness of single crystal GaN (gallium nitride) at elevated temperature is measured for the first time and compared with other materials. A Vickers indentation method was used to determine the hardness of crack-free GaN samples under an applied load of 0.5N in the temperature range 20 - 1200°C. The hardness is 10.8 GPa at room temperature, which is comparable to that of Si. At elevated temperatures GaN shows higher hardness than Si and GaAs. A high mechanical stability for GaN at high temperature is deduced.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamaha, T., Matsushita, T., Kiyohu, H., and Sugimoto, Y., Jpn. J. Appl. Phys., 35, L74 (1996).Google Scholar
2. Brown, P. D., in Proceedings of the 8th International Conference Defect-Recognition, Imaging and Physics in Semiconductors, Narita, Japan, September, 1999 (to be published).Google Scholar
3. Keller, S., Keller, B. P., Wu, Y. -E., Heying, B., Kapolnek, D., Speck, J. S., Mishra, U. K., and Den-Baars, S. P., Appl. Phys. Lett., 68, 1525 (1996).Google Scholar
4. Drory, M. D., Ager, J. W. III, Suski, T., Grzegory, I., and Porowski, S., Appl. Phys. Lett., 69, 4044 (1996).Google Scholar
5. Nowak, R., Pessa, M., Suganuma, M., Leszczynski, M., Grzegory, I., Porowski, S., and Yoshida, F., Appl. Phys. Lett., 75, 2070 (1999).Google Scholar
6. Maeda, K., Suzuki, K., Ichihara, M., Nishiguchi, S., Ono, K., Mera, Y. and Takeuchi, S., in Proceedings of the 20th International Conference on Defects in Semiconductors, Berkeley, USA, June, 1999 (to be published).Google Scholar
7. Yonenaga, I., J. Appl. Phys., 84, 4209 (1998).Google Scholar
8. Usui, A., Sunakawa, H., Sakai, A., and Yamaguchi, A. A., Jpn. J. Appl. Phys., 36, L899 (1997).Google Scholar
9. Sakai, A., Sunakawa, H., and Usui, A., Appl. Phys. Lett. 71, 2259 (1997).Google Scholar
10. Farber, B. Ya., Yoon, S. Y., Lagerlöf, K. P. D., and Heuer, A. H., Phys. Stat. Sol. (a) 137, 485 (1993).Google Scholar