Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-11T14:46:36.988Z Has data issue: false hasContentIssue false

High Sensitivity Convergent Beam Electron Diffraction for the Determination of the Tetragonal Distortion of Epitaxial Films

Published online by Cambridge University Press:  10 February 2011

C. Schuer
Affiliation:
now at: Infineon Technologies AG, A-9500 Villach (Austria)
M. Leicht
Affiliation:
Institute for Microcharacterisation, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstr. 6, D-91058 Erlangen (Germany), schuer@ww.uni-erlangen.de
T. Marek
Affiliation:
now at: Infineon Technologies AG, A-9500 Villach (Austria)
H.P. Strunk
Affiliation:
now at: Infineon Technologies AG, A-9500 Villach (Austria)
Get access

Abstract

We have optimized the sensitivity of convergent beam electron diffraction (CBED) by orienting the specimen such that the central (000) diffraction disc shows a pattern of defect lines that are most sensitive to tetragonal distortion. We compare the position of these lines in the experimentally obtained patterns with results from computer simulations, which need to be based on dynamical diffraction theory. In both experimental and simulated patterns the positions of the defect lines are determined by applying a Hough transformation. As a result of this optimized approach, we can measure the tetragonal distortion of a low temperature grown GaAs layer as low as 0.04%.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Melloch, M.R., Woodall, J.M., Harmon, E.S., Otsuka, N., Pollak, F.H., Nolte, D.D., Feenstra, R.M., Lutz, M.A.; Annu. Rev. Mater. Sci. 25, 547 (1995).Google Scholar
2.Liu, X., Prasad, A., Nishio, J., Weber, E.R., Liliental-Weber, Z., Walukiewicz, W.; Appl. Phys. Lett. 67, 279 (1995).Google Scholar
3.Fatemi, M., Tadayon, B., Twigg, M.E., Dietrich, H.B.; Phys. Rev. B 48, 8911 (1993).Google Scholar
4.Schür, C., Leicht, M., Marek, T., Strunk, H.P., Tautz, S., Kiesel, P., Geiβelbrecht, W., Malzer, S., Döhler, G.H. in Symposium On Non-Stoichiometric III-V Compounds, edited by Kiesel, P., Malzer, S., Marek, T. (Verlag Lehrstuhl fuer Mikrocharakterisierung, Erlangen, 1998, ISBN: 3-932392-12-4) p. 41.Google Scholar
5.Krämer, S., Mayer, J.; Journal of Microscopy 194, 2 (1999).Google Scholar
6.Stadelmann, P.A.; Ultramicroscopy 21, 131 (1987).Google Scholar
7.Ruff, M., Streb, D., Dankowski, S.U., Tautz, S., Kiesel, P., Knüpfer, B., Kneissl, M., Linder, N., Döhler, G.H., Keil, U.D.; Appl. Phys. Lett. 68, 2968 (1996).Google Scholar
8.Marek, T., Berta, R., Schür, C., Tautz, S., Kiesel, P., Kunsagi-Mate, S., Strunk, H.P. in 2nd Symposium On Non-Stoichiometric III-V Compounds, edited by Marek, T., Malzer, S., Kiesel, P. (Verlag Lehrstuhl fuer Mikrocharakterisierung, Erlangen, 1999, ISBN: 3-932392-19-1), p. 103.Google Scholar
9.Madelung, O. (editor), Semiconductors: Group IV Elements and III-V Compounds (Data in Science and Technology), (Springer-Verlag, Berlin, 1991, ISBN: 3-540-53150-5) p. 104.Google Scholar