Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-18T02:51:36.906Z Has data issue: false hasContentIssue false

High Rate Deposition of Nickel Oxide Electrochromic Thin Films by Reactive DC Magnetron Sputtering

Published online by Cambridge University Press:  16 February 2011

Kazuki Yoshimura
Affiliation:
Multifunctional Material Science Department National Industrial Research Institute of Nagoya, Nagoya, 462, JAPAN
T. Miki
Affiliation:
Multifunctional Material Science Department National Industrial Research Institute of Nagoya, Nagoya, 462, JAPAN
S. Tanemura
Affiliation:
Multifunctional Material Science Department National Industrial Research Institute of Nagoya, Nagoya, 462, JAPAN
Get access

Abstract

Nickel oxide electrochromic thin films were prepared by reactive DC magnetron sputtering. As-deposited optical property and electrochromic behavior strongly depended on the target operation mode and the substrate temperature. In the condition of low oxygen flow ratio (∼1%), the deposition rate can be raised up to 40 nm/min at the power of 60 W. The sample with the deposition rate of 30 nm/min exhibited the best electrochromic performance when the substrate temperature was kept to 200°C-300°C during sputtering. The integrated luminous transmittance of the best sample could be controlled from 6.6% to 82.3%.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yu, P. C. and Lampert, C. M., Solar Energy Mater. 25, 301 (1992).Google Scholar
2. Fantini, M. and Gorenstein, A., Solar Energy Materials 16, 487 (1987).Google Scholar
3. Miki, T., Yoshimura, K., Tai, Y., Tazawa, M., Jin, P. and Tanemura, S., in Proc. ISES Solar World Congress, Budapest 1993 (Hungarian Energy Society, Hungary, 1993) Vol. 2, pp. 304.Google Scholar
4. Ottermann, C., Temmink, A. and Bange, K., in Proc. Optical Materials Technology for Energy Efficiency and Solar Energy Conversion IX, The Hague (SPIE, Washington, 1990) pp. 111.Google Scholar
5. Lynam, N. R. and Habibi, H. R., in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion VII: Hamburg (SPIE, Washington, 1988) pp. 63.Google Scholar
6. Agrawal, A., Habibi, H. R., Agrawal, R. K., Cronin, J. P., Roberts, D. M., CaronPopowich, R. and Lampert, C. M., Thin Solid Films 221, 239 (1992).Google Scholar
7. Svensson, J. S. E. M. and Granqvist, C. G., Appl. Phys. Lett. 49, 1566 (1986).Google Scholar
8. Yamada, S., Yoshioka, T., Miyashita, M., Urabe, K. and Kitao, M.: J. Appl. Phys. 63, 2116 (1988).Google Scholar
9. Estrada, W., Andersson, A. M. and Granqvist, C. G., J. Appl. Phys. 64, 3678 (1988).Google Scholar
10. Conell, R. S., Corrigan, D. A. and Powell, B. R., Solar Energy Mater. 25, 301 (1992).Google Scholar
11. Wruck, D. A. and Rubin, M., J. Electrochem. Soc. 140, 1097 (1993).Google Scholar
12. Anderson, A. M., Estrada, W. and Granqvist, C. G., in Optical Materials Technology for Energy Efficiency and Solar Energy Conversion IX, The Hague (SPIE, Washington, 1990) pp. 96.Google Scholar
13. Thornton, J. A., Deposition Technologies for Films and Coatings, edited by Bunshah, R. F. (Noyes, Park Ridge, 1982) pp. 170.Google Scholar
14. Kusano, E., J. Appl. Phys. 73, 8565 (1993).Google Scholar