Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-25T07:35:49.106Z Has data issue: false hasContentIssue false

High Quality Non-Alloyed Pt Ohmic Contacts to P-Type GaN Using Two-Step Surface Treatment

Published online by Cambridge University Press:  03 September 2012

Ja-Soon Jang
Affiliation:
Department of Materials Science and Engineering, Kwangju Institute of Science and Technology (K-JIST), Kwangju 500-712, Korea
Seong-Ju Park
Affiliation:
Department of Materials Science and Engineering, Kwangju Institute of Science and Technology (K-JIST), Kwangju 500-712, Korea
Tae-Yeon Seong
Affiliation:
Department of Materials Science and Engineering, Kwangju Institute of Science and Technology (K-JIST), Kwangju 500-712, Korea e-mail: tyseong@kjist.ac.kr
Get access

Abstract

Two-step surface-treatment is introduced to obtain low resistance Pt contacts to ptype GaN. The first step is performed after the mesa etching process using buffered oxide etch (BOE) and ammonium sulfide [(NH4)2Sx]. This is followed by the second step using BOE. The Pt contact, which was treated sequentially using ultrasonically boiled BOE (10 min) and boiled (NH4)2Sx (10 min), produces a specific contact resistance of 3.0 (±3.8)×10-5 Ωcm2. However, the contact, that was simply BOE-treated, yields 3.1 (±1.1)×10-2 Ωcm2. This indicates that the two-step surface treatment is promising technique for obtaining high quality ohmic contacts to p-GaN. Investigation of the electronic transport mechanisms using current-voltage-temperature (I-V-T) data indicates that thermionic field emission is dominant in the surface-treated Pt contacts.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Mukai, T., and Senoh, M., J. Appl. Phys. 76, 8189 (1994).Google Scholar
2. Nakamura, S., Senoh, M., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., and Sugimoto, Y., Jpn. J. Appl. Phys. 35, L217 (1996).Google Scholar
3. Khan, M.A., Kuznia, J.N., Bhattarai, A.R. and Olson, D.T., Appl. Phys. Lett. 62 1786 (1993).Google Scholar
4. Pankove, J., Chang, S.S., Lee, H.C., Molnar, R.J., Mustakas, T.D. and Zeghbroeck, B. Van, IEDM 94–389 (1994).Google Scholar
5. Bermudez, V. M., J. Appl. Phys. 80, 1190 (1996).Google Scholar
6. Jang, J. S., Park, K. H., Jang, H. K., Kim, H. G., and Park, S. J., J. Vac. Sci. Technol. B 16, 3105 (1998).Google Scholar
7. Mori, T., Kozawa, T., Ohwaki, T., Taga, Y., Nagai, S., Yamasaki, S., Asami, S., Shibata, N., and Koike, M., Appl. Phys. Lett. 69, 3537 (1996).Google Scholar
8. Cao, X. A., Pearton, S. J., Ren, F., and Lothian, J. R., Appl. Phys. Lett. 73, 942 (1998).Google Scholar
9. Lee, J. L., Kim, J. K., Lee, J. W., Park, Y. J., and Kim, T. I, Sol. Stat. Electron. 43, 435 (1999).Google Scholar
10. Kim, J. K, Lee, J. L., Lee, J. W., Shin, H. E., Park, Y. J., and Kim, T. I, Appl. Phys. Lett. 73, 2953 (1998).Google Scholar
11. Rhoderick, E.H. and Williams, R.H., Metal-Semiconductor Contacts (Clarendon, Oxford 1988).Google Scholar
12. Pankove, J.I., Bloom, S., and Harbeke, G., RCA Rev. 36, 163 (1975).Google Scholar
13. Sheu, J. K., Su, Y. K., Chi, G. C., Jou, M. J., and Chang, C. M., Appl. Phys. Lett. 72, 3317 (1998).Google Scholar
14. Jang, J. S., and Seong, T. Y. (unpublished).Google Scholar
15. Yu, A.Y.C., Solid State Electron. 13, 239 (1970)Google Scholar
16. Hattori, K. and Izumi, Y., J. Appl. Phys. 53, 6906 (1982).Google Scholar
17. Jang, J. S., Chang, I. S., Kim, H. K., Seong, T-Y., Lee, S. H., and Park, S. J., Appl. Phys. Lett. 74, 70 (1999).Google Scholar
18. Jang, J. S., Park, S. J., and Seong, T. Y., J. Vac. Sci. Technol.B 1999 (in press).Google Scholar