Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-21T05:15:33.211Z Has data issue: false hasContentIssue false

High Quality Heteroepitaxial ß-SiC Deposited from Methyltrichlorosilane at 1200°C without any Buffer Layer

Published online by Cambridge University Press:  21 February 2011

S. Vepřek
Affiliation:
Institute for Chemistry of Information Recording, Technical University Munich, Lichtenbergstr. 4, D-85747 Garching/Munich
Th. Kunstamann
Affiliation:
Institute for Chemistry of Information Recording, Technical University Munich, Lichtenbergstr. 4, D-85747 Garching/Munich
J. Hofmann
Affiliation:
Institute for Chemistry of Information Recording, Technical University Munich, Lichtenbergstr. 4, D-85747 Garching/Munich
D. Volm
Affiliation:
Department of Physics, Technical University Munich, James-Franck-Str., D-85747 Garching/Munich, Germany
B. Meyer
Affiliation:
Department of Physics, Technical University Munich, James-Franck-Str., D-85747 Garching/Munich, Germany
Get access

Abstract

Using methyltrichlorosilane diluted with hydrogen and a modified temperature program during the initial stage of the deposition we have improved the deposition process and obtained high quality heteroepitaxial films on Si (100) without any carbon buffer layer. The maximum temperature of 1200°C which is used for the substrate cleaning and film deposition is significantly lower than that used in the conventional deposition system SiH4/C3H8 of about 1400°C for the buffer layer and 1350°C for deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Parsons, J.D., Bunshah, R.F., Stafsudd, O.M., Solid State Technol. 28, 133 (1985).Google Scholar
2 Davis, R.F., Kelner, G., Shur, M., Palmour, J.W., Edmond, J.A., Proc. IEEE 79, 677 (1991).Google Scholar
3 Morkoc, H., Strite, S., Gao, G.B., Lin, M.E., Svertlov, B., Burns, M., J.Appl.Phys. 76, 1363 (1994).Google Scholar
4 Nishino, S., Powell, J.A., Will, H.A., Appl.Phys.Lett. 42, 460 (1983)Google Scholar
5 Kondo, Y., Takahashi, T., Ishii, K., Hayashi, Y., Misawa, E., Daimon, H., Yamanaka, M., Yoshida, S., IEEE Electron.Dev.Lett. 7, 404 (1986)Google Scholar
6 Janzen, E., Kordina, O., Chen, W.M., Son, N.T., Monemar, B., Sörman, E., Bergman, P., Harris, C.I., Yakimova, R., Tuo-minen, M., Konstantinov, A.O., Hallin, C., Hemmingsson, C., Physica Scripta 134, 283 (1994).Google Scholar
7 Feng, Z.C., Tin, C.C., Yue, K.T., Hu, R., Williams, J., Liew, S.C., Foo, Y.G., Choo, S.K. L., Ng, W.E., Tang, S.H., Mat.Res.Soc.Symp.Proc. 339, 1 (1994)Google Scholar
8 Nishino, S., Saraie, J., Springer Proceedings in Physics 34, 45 (1989)Google Scholar
9 Chiu, C.C., Desu, S.B., Tsai, C.Y., J.Mat.Res. 8, 2617 (1993)Google Scholar
10 Kunstamnn, Th., Angerer, H., Knecht, J., Veprek, S., Mitzel, N.W. and Schmidbaur, H., Chem. Materials 7, 1675 (1995)Google Scholar
11 Kunstamnn, Th. and Veprek, S., Appl. Phys. Lett. 67, xx (1995) in pressGoogle Scholar
12 Dushman, S., Scientific Foundations of Vacuum Technique, New York, 1949 p. 749 Google Scholar
13 Vodakov, Y.A., Mokhov, E.N., Ramm, M.G. and Roenkov, A.D., Kristall und Technik 14, 729 (1979)Google Scholar
14 Curtins, H. and Favre, M., in: Amorphous Silicon and Related Materials, ed. Fritzsche, H., World Sci. Publ. Co., Singapoore 1989.Google Scholar
15 Choyke, W.J., Feng, Z.C. and Powell, J.A., J. Appl. Phys. 64, 3163 (1988)Google Scholar
16 Freitas, J.A., Bishop, S.G., Edmond, J.A., Ryu, J. and Davis, R.F., J. Appl. Phys. 61, 2011 (1987)Google Scholar