Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T23:50:01.684Z Has data issue: false hasContentIssue false

High Quality a-Si:H Films Grown at High Deposition Rates

Published online by Cambridge University Press:  15 February 2011

Yoram Lubianiker
Affiliation:
Department of Physics, University of Oregon, Eugene, OR 97403
Yanyang Tan
Affiliation:
Department of Physics, University of Oregon, Eugene, OR 97403
J. David Cohen
Affiliation:
Department of Physics, University of Oregon, Eugene, OR 97403
Gautam Ganguly
Affiliation:
Electrotechnical Laboratory, Tsukuba-shi, Ibaraki 305, Japan Solarex, Toano VA 23168
Get access

Abstract

Intrinsic a-Si:H samples were grown with and without hydrogen (H2) dilution of silane at different growth rates. We find that the dilution leads to a considerable reduction in the defect density, in particular at high growth rates. The defect density is particularly low for samples grown using H2 dilution conditions at growth rates as high as 10 Å/sec. Using transient photocapacitance measurements we find evidence for a small concentration of microcrystallites embedded in the amorphous films. An increase in the microcrystalline fraction correlates with a decrease in the defect density.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ganguly, G. and Matsuda, A., Mat. Res. Soc. Symp. Proc. 258, 39 (1992).Google Scholar
2. Yang, J., Xu, X. and Guha, S., Mat. Res. Soc. Sy,mp. Proc 336, 687 (1994).Google Scholar
3. Arya, R., Catalano, A., Bennet, M., Newton, J., Fiesselman, B., Yang, L., Li, Y. M. and D'Aiello, R., Proc. 11th EC PVSEC, 199 (1992).Google Scholar
4. Mahan, A.H., Iwaniczko, E., Nelson, B.P., Reedy, R.C., Crandall, R.S., Guha, S. and Yang, J., Proc. 25th IEEE PVSC, 803 (1996).Google Scholar
5. Saito, K., Sano, M., Ogawa, K. and Kajita, I., J. Non-Cryst. Solids 164–166, 689 (1993).Google Scholar
6. Tsu, D.V., Chao, B.S., Ovshinsky, S.R., Guha, S. and Yang, J., Appl. Phys. Lett. 71, 1317 (1997).Google Scholar
7. Koh, J.H., Lee, Y., Fujiwara, H., Wronski, C.R. and Collins, R.W., Appl. Phys. Lett. 73, 1526 (1998).Google Scholar
8. Yang, J., Banerjee, A. and Guha, S., Appl. Phys. Lett. 70, 2975 (1997).Google Scholar
9. Guha, S., Yang, J., Williamson, D.L., Lubianiker, Y., Cohen, J.D. and Mahan, A.H., Appl. Phys. Lett. 74, 1860 (1999).Google Scholar
10. Hayashi, R., Takagi, T., Ganguly, G., Fukawa, M., Kondo, M. and Matsuda, A., Proc. 2nd WCEPVSEC, 925 (1998).Google Scholar
11. Cohen, J.D., in Semiconductors and Semimetals, Vol. 21C, edited by Pankove, J. (Academic, New York, 1984), p. 9.Google Scholar
12. Michelson, C.E., Gelatos, A.V. and Cohen, J.D., Appl. Phys. Lett. 47,412 (1985)Google Scholar
13. Cohen, J.D., Unold, T. and Gelatos, A.V., J. Non-Cryst. Solids 141, 142 (1992).Google Scholar
14. Unold, T., Hautala, J. and Cohen, J.D., Phys. Rev. B 50, 16985 (1994).Google Scholar
15. Kwon, D., Lee, H., Cohen, J.D., Jin, H-C. and Abelson, J.R., Jour. Non-Cryst. Solids 227–230, 1040 (1998).Google Scholar
16. Matsuda, A., J. Non-Cryst. Solids 59–60, 767 (1983).Google Scholar
17. Robertson, R. and Gallagher, A., J. Appl. Phys. 59, 3402 (1986).Google Scholar
18. Ganguly, G., Ikeda, T., Kajiwara, K. and Matsuda, A., Mat. Res. Soc. Symp. Proc. 467, 681 (1997).Google Scholar