Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T04:49:26.567Z Has data issue: false hasContentIssue false

High Open-Circuit Voltage in Silicon Heterojunction Solar Cells

Published online by Cambridge University Press:  01 February 2011

Qi Wang
Affiliation:
qi_wang@nrel.gov, NREL, EDMD, 1617 Cole Blvd, Golden, CO, 80410, United States
Matt R. Page
Affiliation:
Matt_page@nrel.gov, National Renewable Eenergy Laboratory, EDMD, Golden, CO, 80410, United States
Eugene Iwancizko
Affiliation:
eugence_iwancizko@nrel.gov, National Renewable Eenergy Laboratory, EDMD, Golden, CO, 80410, United States
Yueqin Xu
Affiliation:
yueqin_xu@nrel.gov, National Renewable Eenergy Laboratory, EDMD, Golden, CO, 80410, United States
Lorenzo Roybal
Affiliation:
Lorenzo_Roybal@nrel.gov, National Renewable Eenergy Laboratory, EDMD, Golden, CO, 80410, United States
Russell Bauer
Affiliation:
russell_bauer@nrel.gov, National Renewable Eenergy Laboratory, EDMD, Golden, CO, 80410, United States
Dean Levi
Affiliation:
Dean_levi@nrel.gov, National Renewable Eenergy Laboratory, EDMD, Golden, CO, 80410, United States
Yanfa Yan
Affiliation:
yanfa_yan@nrel.gov, National Renewable Eenergy Laboratory, EDMD, Golden, CO, 80410, United States
Tihu Wang
Affiliation:
tihu_wang@nrel.gov, Suntech Power, Wuxi, N/A, China, People's Republic of
Howard M. Branz
Affiliation:
howard_branz@nrel.gov, National Renewable Eenergy Laboratory, EDMD, Golden, CO, 80410, United States
Get access

Abstract

High open-circuit voltage (Voc) silicon heterojunction (SHJ) solar cells are fabricated in double-heterojunction a-Si:H/c-Si/a-Si:H structures using low temperature (<225°C) hydrogenated amorphous silicon (a-Si:H) contacts deposited by hot-wire chemical vapor deposition (HWCVD). On p-type c-Si float-zone wafers, we used an amorphous n/i contact to the top surface and an i/p contact to the back surface to obtain a Voc of 667 mV in a 1 cm2 cell with an efficiency of 18.2%. This is the best reported p-type SHJ voltage. In our labs, it improves over the 652 mV cell obtained with a front amorphous n/i heterojunction emitter and a high-temperature alloyed Al back-surface-field contact. On n-type c-Si float-zone wafers, we used an a Si:H (p/i) front emitter and an a-Si:H (i/n) back contact to achieve a Voc of 691 mV on 1 cm2 cell. Though not as high as the 730 mV reported by Sanyo on n-wafers, this is the highest reported Voc for SHJ c-Si cells processed by the HWCVD technique. We found that effective c-Si surface cleaning and a double-heterojunction are keys to obtaining high Voc. Transmission electron microscopy reveals that high Voc cells require an abrupt interface from c-Si to a-Si:H. If the transition from the base wafer to the a-Si:H incorporates either microcrystalline or epitaxial Si at c Si interface, a low Voc will result. Lifetime measurement shows that the back-surface-recombination velocity (BSRV) can be reduced to ~15 cm/s through a-Si:H passivation. Amorphous silicon heterojunction layers on crystalline wafers thus combine low-surface recombination velocity with excellent carrier extraction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Taguchi, M., Kawamoto, K., Tsuge, S., Baba, T., Sakata, H., Morizane, M., Uchihashi, K., Nakamura, N., Kiyama, S., and Oota, O., Prog. PV Res. Appl, 8: p. 503, 2000.Google Scholar
2 Wang, T.H., Iwaniczko, E., Page, M.R., Levi, D.H., Yan, Y., Yelundur, V., Branz, H.M., Rohatgi, A., and Wang, Q.. IEEE.Proceedings of the 31st IEEE Photovoltaic Specialists Conference p. 955, 2005.Google Scholar
3 Wang, T.H., Page, M.R., Iwaniczko, E., Xu, Y.Q., Yan, Y.F., Roybal, L., Levi, D., Bauer, R., Branz, H.M., and Wang, Q.. WIP-Renewable Energies. 21st European Photovoltaic Solar Energy Conference p. 781, 2006.Google Scholar
4 Page, M.R., Iwaniczko, E., Wang, Q., Levi, D.H., Yan, Y., Branz, H.M., Yelundur, V., Rohatgi, A., and Wang, T.H.. National Renewable Energy Laboratory. 14th Workshop on Crystalline Silicon Solar Cells & Modules:Materials and Processes p. 246, 2004.Google Scholar
5 Page, M.R., Iwaniczko, E., Xu, Y., Wang, Q., Yan, Y., Roybal, L., Branz, H.M., and Wang, T. H.. the 4th World Conference on Photovoltaic Energy Conversion (WCPEC-4) p. 6, 2006.Google Scholar
6 Wang, T.H., Page, M.R., Iwaniczko, E., Xu, Y.Q., Yan, Y.F., Roybal, L., Levi, D., Bauer, R., Branz, H.M., and Wang, Q.. MRS. 910: Mat. Res. Soc. Proc. p. 731, 2006.Google Scholar
7 Schaper, M., Schmidt, J., Plagwitz, H., and Brendel, R., Prog. Photovolt: Res. Appl, 13: p. 381, 2005.Google Scholar
8 Rostan, P.J., Rau, U., Nguyen, V.X., Kirchartz, T., Schubert, M.B., and Werner, J.H.. Technical Digest of the 15th International Photovoltaic Science & Engineering Conference p. 214, 2005.Google Scholar
9 Yan, Y., Page, M., Wang, T. H., Al-Jassim, M.M., Branz, H. M., and Wang, Q., Appl. Phys. Lett., 88: p.3, 2006.Google Scholar
10 Wolf, Stefaan De and Kondo, M., Appl. Phys. Lett., 90: p.042111, 2007.Google Scholar